【題目】已知橢圓的離心率為,且過點(diǎn)B(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)A是橢圓的右頂點(diǎn),點(diǎn)在以AB為直徑的圓上,延長PB交橢圓E于點(diǎn)Q,求的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)由橢圓的離心率和b=1,結(jié)合基本量的關(guān)系,可得a,進(jìn)而得到橢圓方程;(Ⅱ)由A(2,0),又B(0,1),求得圓方程和設(shè)PQ的參數(shù)方程為(t為參數(shù),α為銳角),分別代入圓方程和橢圓方程,可得|BP|,|BQ|,再由換元法和判別式法,解不等式可得最大值.
(Ⅰ)橢圓的離心率為,且過點(diǎn)B(0,1),可得b=1,,,解得a=2,,則橢圓E的方程為;
(Ⅱ)可得A(2,0),又B(0,1),可得以AB為直徑的圓方程為,
設(shè)PQ的參數(shù)方程為(為參數(shù),為銳角),
代入圓方程可得,
可得,
將直線的參數(shù)方程代入橢圓方程可得:
,
可得,
則,
設(shè),設(shè)上式為,
即有,
,即為,
解得,
則的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=.
(1)求證:A1B⊥B1C;
(2)求二面角A1—B1C—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若0<a<b,且a+b=1,則下列各式中最大的是( )
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為( )
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合P={x|x2﹣2 x≤0},m=20.3 , 則下列關(guān)系中正確的( )
A.mP
B.mP
C.{m}∈P
D.{m}P
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校5個(gè)學(xué)生期末考試數(shù)學(xué)成績和總分年級排名如下表:
學(xué)生的編號 | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué) | 115 | 112 | 93 | 125 | 145 |
年級排名 | 250 | 300 | 450 | 70 | 10 |
(1)通過大量事實(shí)證明發(fā)現(xiàn),一個(gè)學(xué)生的數(shù)學(xué)成績和總分年級排名具有很強(qiáng)的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績,用表示年級排名,求與的回歸方程;(其中都取整數(shù))
(2)若在本次考試中,預(yù)計(jì)數(shù)學(xué)分?jǐn)?shù)為120分的學(xué)生年級排名大概是多少?
參考數(shù)據(jù)和公式:,其中,,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1+x﹣ +…+ ,g(x)=1﹣x+ ﹣…﹣ ,設(shè)函數(shù)F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為( )
A.9
B.10
C.11
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集為[0,4],求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com