如圖程序運(yùn)行結(jié)果是
13
13
分析:根據(jù)i的初始值為4,循環(huán)條件是i<6,可知循環(huán)次數(shù),于是可以逐步按規(guī)律計(jì)算出a的值.
解答:解:由題設(shè)循環(huán)體要執(zhí)行二次,
第一次循環(huán)結(jié)束后a=a+b=3,b=a+b=5,
第二次循環(huán)結(jié)束后a=a+b=8,b=a+b=13,
故答案為:13
點(diǎn)評(píng):本題考查循環(huán)結(jié)構(gòu),解決此題關(guān)鍵是理解其中的算法結(jié)構(gòu)與循環(huán)體執(zhí)行的次數(shù),然后依次計(jì)算得出結(jié)果,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、如圖的程序開(kāi)始運(yùn)行后,當(dāng)輸入的x值是2010時(shí),則輸出的結(jié)果是
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=7,b=6,如圖程序運(yùn)行結(jié)果是
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年云南省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:選擇題

(本小題考查程序框圖的知識(shí)) 閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是

1   B.2   C.3   D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理)已知函數(shù)數(shù)學(xué)公式
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且數(shù)學(xué)公式,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案