【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn),

(1)寫出的方程;

(2)若,求的值.

【答案】(1);(2).

【解析】

試題分析:(1)由題中條件:點(diǎn)到兩點(diǎn)的距離之和等于,結(jié)合橢圓的定義知其軌跡式樣,從而求得其方程(2)先將直線方程與橢圓方程聯(lián)立方程組,消去得到一個(gè)一元二次方程,再利用根與系數(shù)的關(guān)系結(jié)合向量垂直的條件列關(guān)于方程式即可求得參數(shù)值.

試題解析:(1)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以(0,-)、(0,)為焦點(diǎn),長(zhǎng)半軸為2的橢圓,它的短半軸,

故曲線C的方程為.

(2)設(shè)A(x1,y1),B(x2,y2),

聯(lián)立方程

消去y并整理得(k2+4)x2+2kx-3=0.

其中Δ=4k2+12(k2+4)>0恒成立.

,.

,x1x2+y1y2=0.

y1y2=k2x1x2+k(x1+x2)+1,

于是x1x2+y1y2=-,

化簡(jiǎn)得-4k2+1=0,所以k=±.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

I求證:在區(qū)間上單調(diào)遞增;

II,函數(shù)在區(qū)間上的最大值為,求的試題分析式.并判斷是否有最大值和最小值,請(qǐng)說明理由參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】城市有一直角梯形綠,其中,km,km.現(xiàn)過邊界點(diǎn)鋪設(shè)一條直的灌溉水管,將綠分成面積相等的兩部分.

(1)如圖的中點(diǎn),邊界上,求灌溉水管的長(zhǎng)度

(2)如圖,邊界上,求灌溉水管的最短長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)滿足約束條件:

(1)請(qǐng)畫出可行域,并求的最小值;

(2)若取最大值的最優(yōu)解有無窮多個(gè),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

I)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);

II)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中用表示.

(1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求及乙組同學(xué)投籃命中次數(shù)的方差;

(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點(diǎn),且,求的值;

(2)若,是直線上的動(dòng)點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點(diǎn)滿足.

(1)求證:平面平面;

(2)求平面 與平面所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案