對(duì)一切實(shí)數(shù)x,不等式x2+a|x|+1≥0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,-2)
B.[-2,+∞)
C.[-2,2]
D.[0,+∞)
【答案】分析:當(dāng)x=0時(shí),不等式x2+a|x|+1≥0恒成立,當(dāng)x≠0時(shí),則有 a≥-(|x|+) 恒成立,故a大于或等于-(|x|+) 的最大值.再利用基本不等式求得 (|x|+)得最大值,即可得到實(shí)數(shù)a的取值范圍.
解答:解:當(dāng)x=0時(shí),不等式x2+a|x|+1≥0恒成立,當(dāng)x≠0時(shí),則有 a≥=-(|x|+),故a大于或等于-(|x|+) 的最大值.
由基本不等式可得 (|x|+)≥2,∴-(|x|+)≥-2,即-(|x|+) 的最大值為-2,
故實(shí)數(shù)a的取值范圍是[-2,+∞),
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)的恒成立問題,基本不等式的應(yīng)用,求函數(shù)的最值,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)一切實(shí)數(shù)x,不等式x2+a|x|+1≥0恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•綿陽二模)對(duì)一切實(shí)數(shù)x,不等式x2+a|x|+1≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+
1
2
x+c(a≠0
).若函數(shù)f(x)滿足下列條件:①f(-1)=0;②對(duì)一切實(shí)數(shù)x,不等式f(x)
1
2
x2
+
1
2
恒成立.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若f(x)≤t2-2at+1對(duì)?x∈[-1,1],?a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍;
(Ⅲ)求證:
1
f(1)
+
1
f(2)
+…+
1
f(n)
2n
n+2
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
ax3+
1
2
bx2+cx(a,b,c∈R,a≠0)
的圖象在點(diǎn)(x,f(x))處的切線的斜率為k(x),且函數(shù)g(x)=k(x)-
1
2
x
為偶函數(shù).若函數(shù)k(x)滿足下列條件:①k(-1)=0;②對(duì)一切實(shí)數(shù)x,不等式k(x)≤
1
2
x2+
1
2
恒成立.
(Ⅰ)求函數(shù)k(x)的表達(dá)式;
(Ⅱ)求證:
1
k(1)
+
1
k(2)
+…+
1
k(n)
2n
n+2
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c,若方程f(x)=x無實(shí)根,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案