【題目】建造一間地面面積為12m2的背面靠墻的豬圈,底面為長(zhǎng)方形的豬圈正面的造價(jià)為120元/m2 , 側(cè)面的造價(jià)為80元/m2 , 屋頂造價(jià)為1120元.如果墻高3m,且不計(jì)豬圈背面的費(fèi)用,問怎樣設(shè)計(jì)能使豬圈的總造價(jià)最低,最低總造價(jià)是多少元?
【答案】解:設(shè)豬圈底面正面的邊長(zhǎng)為xm,則其側(cè)面邊長(zhǎng)為
那么豬圈的總造價(jià)y=3x120+3× ×80×2+1120=360x+ +1120,
因?yàn)? ,
當(dāng)且僅當(dāng) ,即x=4時(shí)取“=”,
所以當(dāng)豬圈正面底邊為4米側(cè)面底邊為3米時(shí),總造價(jià)最低為4000元.
【解析】設(shè)豬圈底面正面的邊長(zhǎng)為xm,利用x表示出豬圈的總造價(jià),再根據(jù)函數(shù)的特點(diǎn)利用基本不等式進(jìn)行求最值即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用基本不等式在最值問題中的應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= .
(Ⅰ)求證:PD⊥平面PAB;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在點(diǎn)M,使得BM∥平面PCD?若存在,求 的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓曲線方程為 ,兩焦點(diǎn)分別為F1 , F2 .
(1)若n=﹣1,過左焦點(diǎn)為F1且斜率為 的直線交圓錐曲線于點(diǎn)A,B,求△ABF2的周長(zhǎng).
(2)若n=4,P圓錐曲線上一點(diǎn),求PF1PF2的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合 ,設(shè)f:x→2x﹣3是集合C={﹣1,1,n}到集合B={﹣5,﹣1,3}的映射.
(1)若m=5,求A∩C;
(2)若﹣2∈A,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017河北唐山二模】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目 | 生產(chǎn)成本 | 檢驗(yàn)費(fèi)/次 | 調(diào)試費(fèi) | 出廠價(jià) |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤(rùn)為1600元的概率(注:利潤(rùn)出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤(rùn),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax+b,且f(4)=﹣3.
(1)若函數(shù)f(x)在區(qū)間[2,+∞)上遞減,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,且關(guān)于x的方程f(x)=log2m在區(qū)間[﹣3,3]上有解,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017北京豐臺(tái)5月綜合測(cè)試】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)證明:對(duì)于,在區(qū)間上有極小值,且極小值大于0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017年第二次全國(guó)大聯(lián)考江蘇卷】若無窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.
(1)若具有局部等差數(shù)列,且,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有局部等差數(shù)列,并說明理由;
(3)設(shè)既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證:具有局部等差數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com