兩數(shù)
2
+1與
2
-1的等比中項(xiàng)是( 。
分析:設(shè)兩數(shù)
2
+1與
2
-1的等比中項(xiàng)是x,則由等比中項(xiàng)的定義可得x2=(
2
+1
)(
2
-1
)=1,解方程求得 x的值.
解答:解:設(shè)兩數(shù)
2
+1與
2
-1的等比中項(xiàng)是x,則由等比中項(xiàng)的定義可得x2=(
2
+1
)(
2
-1
)=1,
∴x=±1,
故選D.
點(diǎn)評(píng):本題主要考查等比數(shù)列的定義和性質(zhì),等比中項(xiàng)的定義.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩數(shù)
2
-1
2
+1
的等差中項(xiàng)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{0,
3
3
,1
}的函數(shù)圖象向下平移2個(gè)單位,得到的新函數(shù)的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個(gè)函數(shù)分別與y軸交于A、B兩點(diǎn),與直線x=
3
分別交于D、C兩點(diǎn),在平面直角坐標(biāo)系中畫出圖形,判斷以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{1,-2b,b2+
1
2
}的函數(shù)圖象的有交點(diǎn),求滿足條件的實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年黑龍江省高二下學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

、某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子的發(fā)芽數(shù),如下


 

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取點(diǎn)2組數(shù)據(jù)進(jìn)行檢驗(yàn)

(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求關(guān)于的線性回歸方程;

(2)若線性回歸方程得到的估計(jì)數(shù)據(jù)與所選點(diǎn)檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?

參考公式:,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

兩數(shù)
2
-1
2
+1
的等差中項(xiàng)是( 。
A.2
2
B.
2
C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案