若圓過橢圓=(a>b>0)的兩個焦點,則該橢圓的離心率為

[  ]

A.
B.
C.
D.
答案:B
解析:

解:


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上的任意一點到它的兩個焦點F1(-c,0),F(xiàn)2(c,0)(c>0)的距離之和為2
2
,且其焦距為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線x-y+m=0與橢圓C交于不同的兩點A,B.問是否存在以A,B為直徑的圓過橢圓的右焦點F2.若存在,求出m的值;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)的四個頂點構(gòu)成邊長為5的菱形,原點O到直線AB的距離為
12
5
,其A(0,a),B(-b,0).直線l:x=my+n與橢圓M相交于C,D兩點,且以CD為直徑的圓過橢圓的右頂點P(其中點C,D與點P不重合).
(1)求橢圓M的方程;
(2)試判斷直線l與x軸是否交于定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1、F2,右頂點為A,P為橢圓C上任意一點.已知
PF1
PF2
的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(M、N不是左右頂點),且以MN為直徑的圓過點A.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省重點中學盟校2011屆高三第二次聯(lián)考數(shù)學理科試題 題型:022

給出以下三個命題:

(A)已知P(m,4)是橢圓(a>b>0)上的一點,F(xiàn)1、F2是左、右兩個焦點,若△PF1F2的內(nèi)切圓的半徑為,則此橢圓的離心率

(B)過橢圓(a>b>0)上的任意一動點M,引圓O:x2+y2=b2的兩條切線MA、MB,切點分別為A、B,若∠BMA=,則橢圓的離心率e的取值范圍為;

(C)已知F1(-2,0)、F2(2,0),P是直線x=-1上一動點,則以F1、F2為焦點且過點P的雙曲線的離心率e的取值范圍是[2,+∞).

其中真命題的代號是________(寫出所有真命題的代號).

查看答案和解析>>

同步練習冊答案