已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
(1) (2) (3)
解析試題分析:(1) 利用導(dǎo)數(shù)求切線方程,關(guān)鍵在于理解切點(diǎn)的三個(gè)含義,一是在切點(diǎn)處的導(dǎo)數(shù)值為切線的斜率,二是切點(diǎn)在曲線上,即切點(diǎn)坐標(biāo)滿足曲線方程,三是切點(diǎn)在直線上,即切點(diǎn)坐標(biāo)滿足直線方程,有時(shí)這一條件用直線兩點(diǎn)間斜率公式表示.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/4/1p6pl4.png" style="vertical-align:middle;" />所以,再根據(jù)點(diǎn)斜式寫出切線方程. (2)利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,往往轉(zhuǎn)化為研究導(dǎo)函數(shù)為零時(shí)方程根的情況,本題函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),就轉(zhuǎn)化為在區(qū)間(1,2)上有不相等的根,可由實(shí)根分布列充要條件,也可利用變量分離結(jié)合圖象求函數(shù)對(duì)應(yīng)區(qū)域范圍,(3)已知函數(shù)最值求參數(shù)取值范圍,可從恒成立角度出發(fā),實(shí)現(xiàn)等價(jià)轉(zhuǎn)化,也可分類討論求最值列等式.本題采取對(duì)恒成立較好.轉(zhuǎn)化為二次函數(shù)恒成立可從四個(gè)方面研究:一是開(kāi)口方向,二是對(duì)稱軸,三是判別式,四是區(qū)間端點(diǎn)函數(shù)值的正負(fù).
試題解析:(1)解:當(dāng)時(shí),,則,故 2分
又切點(diǎn)為,故所求切線方程為,即 4分
(2)由題意知,在區(qū)間(1,2)上有不重復(fù)的零點(diǎn),
由,得,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/18/3/vouhx1.png" style="vertical-align:middle;" />,所以 7分令,則,故在區(qū)間(1,2)上是增函數(shù),所以其值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/10/4/pcatl2.png" style="vertical-align:middle;" />,從而的取值范圍是 9分
(3),
由題意知對(duì)恒成立,即對(duì)恒成立,即 ①對(duì)恒成立 11分
當(dāng)時(shí),①式顯然成立;
當(dāng)時(shí),①式可化為 ②,
令,則其圖象是開(kāi)口向下的拋物線,所以 13分
即,其等價(jià)于 ③ ,
因?yàn)棰墼?img src="http://thumb.zyjl.cn/pic5/tikupic/66/f/1fd0j2.png" style="vertical-align:middle;" />時(shí)有解,所以,解得,
從而的最大值為 16分
考點(diǎn):利用導(dǎo)數(shù)求切線方程,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,不等式恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,
(1)若,求曲線在處的切線方程;
(2)若對(duì)任意的,都有恒成立,求的最小值;
(3)設(shè),,若,為曲線的兩個(gè)不同點(diǎn),滿足,且,使得曲線在處的切線與直線AB平行,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)對(duì)一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對(duì)于任意,總存在, 使得, 求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中.
(Ⅰ)若,求函數(shù)的極值點(diǎn);
(Ⅱ)若在區(qū)間內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù);
(Ⅰ)求證:函數(shù)在上單調(diào)遞增;
(Ⅱ)設(shè),若直線PQ∥x軸,求P,Q兩點(diǎn)間的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a,b為常數(shù),a¹0,函數(shù).
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com