已知拋物線的焦點為,過任作直線(軸不平行)交拋物線分別于兩點,點關于軸對稱點為

(1)求證:直線軸交點必為定點;
(2)過分別作拋物線的切線,兩條切線交于,求的最小值,并求當取最小值時直線的方程.

(1)通過確定直線的方程,證明直線軸交于定點.
(2).

解析試題分析:(1)通過確定直線的方程,證明直線軸交于定點.
(2)應用導數(shù)的幾何意義,確定過點及過點的切線方程并聯(lián)立方程組,確定,,
進一步應用“弦長公式”及均值定理,建立的方程,確定得到,從而求得直線的方程為:.
試題解析:設,∵拋物線的焦點為

∴可設直線的方程為:
,消去并整理得:
  4分
,
直線的方程為
∴直線軸交于定點    7分
(2),∴過點的切線方程為:
即:③,同理可得過點的切線方程為:
④  9分
③—④得:()

③+④得:
  12分
,

,取等號時,,
直線的方程為:.  15分
考點:直線與拋物線的位置關系,導數(shù)的幾何意義,均值定理的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線交橢圓兩點,且、成等差數(shù)列,點M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,點到兩點的距離之和等于4,設點的軌跡為,直線交于兩點.
(1)寫出的方程;
(2)若點在第一象限,證明當時,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點,自上而下順次記為,如果線段的長按此順序構成一個等差數(shù)列,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點到定點的距離之和為.
(Ⅰ)求動點軌跡的方程;
(Ⅱ)設,過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點,右準線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標準方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的長軸兩端點分別為是橢圓上的動點,以為一邊在軸下方作矩形,使,于點于點

(Ⅰ)如圖(1),若,且為橢圓上頂點時,的面積為12,點到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

同步練習冊答案