【題目】已知,

1)對(duì),有恒成立,求的最大整數(shù)解;

2)令,若有兩個(gè)零點(diǎn)分別為,的唯一的極值點(diǎn),求證:.

【答案】13 2)見(jiàn)解析

【解析】

1)由等到價(jià)于,可令,求得導(dǎo)數(shù),再構(gòu)造函數(shù),求得導(dǎo)數(shù),判斷單調(diào)性可得的單調(diào)性,以及最小值,即可得到所求的最大整數(shù)值;

2)求得的導(dǎo)數(shù)的單調(diào)性,由極小值小于0,可得,再由分析法,注意構(gòu)造函數(shù),求得導(dǎo)數(shù)和單調(diào)性,即可得證.

1)解:等價(jià)于,

,則,

,則

所以上為遞增函數(shù),

因?yàn)?/span>,

所以存在,使得,即

所以上遞減,在上遞增,

所以,

所以的最大整數(shù)為3;

2)證明:,則

當(dāng)時(shí),,所以上單調(diào)遞增,

此時(shí)不可能有兩個(gè)零點(diǎn),

所以,

所以

解得

當(dāng)時(shí),,當(dāng)時(shí),,

所以上單調(diào)遞減,上單調(diào)遞增,

而要使有兩個(gè)零點(diǎn),要滿(mǎn)足

,可得

因?yàn)?/span>,,令,

,得

所以

,只需證

,則,

,則

所以上遞增,

所以上遞增,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線(xiàn)交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20183月份,上海出臺(tái)了《關(guān)于建立完善本市生活垃圾全程分類(lèi)體系的實(shí)施方案》,4月份又出臺(tái)了《上海市生活垃圾全程分類(lèi)體系建設(shè)行動(dòng)計(jì)劃(2018-2020年)》,提出到2020年底,基本實(shí)現(xiàn)單位生活垃圾強(qiáng)制分類(lèi)全覆蓋,居民區(qū)普遍推行生活垃圾分類(lèi)制度.為加強(qiáng)社區(qū)居民的垃圾分類(lèi)意識(shí),推動(dòng)社區(qū)垃圾分類(lèi)正確投放,某社區(qū)在健身廣場(chǎng)舉辦了垃圾分類(lèi),從我做起生活垃圾分類(lèi)大型宣傳活動(dòng),號(hào)召社區(qū)居民用實(shí)際行動(dòng)為建設(shè)綠色家園貢獻(xiàn)一份力量,為此需要征集一部分垃圾分類(lèi)志愿者.

1)為調(diào)查社區(qū)居民喜歡擔(dān)任垃圾分類(lèi)志愿者是否與性別有關(guān),現(xiàn)隨機(jī)選取了一部分社區(qū)居民進(jìn)行調(diào)查,其中被調(diào)查的男性居民和女性居民人數(shù)相同,男性居民中不喜歡擔(dān)任垃圾分類(lèi)志愿者占男性居民的,女性居民中不喜歡擔(dān)任垃圾分類(lèi)志愿者占女性居民的,若研究得到在犯錯(cuò)誤概率不超過(guò)0.010的前提下,認(rèn)為居民喜歡擔(dān)任垃圾分類(lèi)志愿者與性別有關(guān),則被調(diào)查的女性居民至少多少人?

,,

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2)某垃圾站的日垃圾分揀量(千克)與垃圾分類(lèi)志愿者人數(shù)(人)滿(mǎn)足回歸直線(xiàn)方程,數(shù)據(jù)統(tǒng)計(jì)如下:

志愿者人數(shù)(人)

2

3

4

5

6

日垃圾分揀量(千克)

25

30

40

45

已知,,根據(jù)所給數(shù)據(jù)求和回歸直線(xiàn)方程,附:,

3)用(2)中所求的線(xiàn)性回歸方程得到與對(duì)應(yīng)的日垃圾分揀量的估計(jì)值.當(dāng)分揀數(shù)據(jù)與估計(jì)值滿(mǎn)足時(shí),則將分揀數(shù)據(jù)稱(chēng)為一個(gè)正常數(shù)據(jù).現(xiàn)從5個(gè)分揀數(shù)據(jù)中任取3個(gè),記表示取得正常數(shù)據(jù)的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.且曲線(xiàn)的極坐標(biāo)方程為.

1)求直線(xiàn)的普通方程以及曲線(xiàn)的直角坐標(biāo)方程;

2)若點(diǎn)的極坐標(biāo)為,直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有)份血液樣本,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)次;(2)混合檢驗(yàn),將其中)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為

(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)4次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.

(2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為

(。┰囘\(yùn)用概率統(tǒng)計(jì)的知識(shí),若 ,試求關(guān)于的函數(shù)關(guān)系式;

(ⅱ)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)老師任教的班級(jí)有50名學(xué)生,某次單元測(cè)驗(yàn)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間為,,,,

1)求圖中的值;

2)從成績(jī)不低于80分的同學(xué)中隨機(jī)選取3人,該3人中成績(jī)?cè)?/span>90分以上(含90分)的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“干支紀(jì)年法”是中國(guó)歷法自古以來(lái)就使用的紀(jì)年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸為十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥為十二地支.“干支紀(jì)年法”是以一個(gè)天干和一個(gè)地支按上述順序相配排列起來(lái),天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此類(lèi)推,則2080年是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,焦點(diǎn)為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線(xiàn)l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線(xiàn)l與橢圓C交于兩點(diǎn).記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)上有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案