設(shè)F(x)=f(x)+f(-x),且f′(x)存在,則F′(x)是( 。
A、奇函數(shù)
B、偶函數(shù)
C、非奇非偶的函數(shù)
D、不能判定其奇偶性的函數(shù)
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)的運(yùn)算法則和函數(shù)的奇偶性的判定方法即可得出.
解答: 解:∵F(x)=f(x)+f(-x),且f′(x)存在,
∴F′(x)=f′(x)-f′(-x),
∴F′(-x)=-F′(x).
由于x,-x都在定義域內(nèi),
∴函數(shù)F(x)定義域關(guān)于原點(diǎn)對稱,因此F′(x)是偶函數(shù).
故選:B.
點(diǎn)評:本題考查了導(dǎo)數(shù)的運(yùn)算法則和函數(shù)的奇偶性的判定方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga|x|在(0,1)上有f(x)>0,則x•f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
右支上一點(diǎn),F(xiàn)1與F2是左右焦點(diǎn),O為原點(diǎn),則t=
PF1+PF2
OP
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(x,y)是平面區(qū)域
x≥0
y≥0
x-y+1≥0
2x+y-4≤0
內(nèi)的動點(diǎn),則(x+1)2+(y+1)2的最大值是( 。
A、10
B、
49
5
C、
13
D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個命題:①若0>a>b,則
1
a
1
b
②若a<b<0,則a2>b2③若
1
a
>1,則1>a④若a<3,b<3,則a+b<6且ab<9,其中是真命題的有(  )
A、①②B、①③
C、①②③D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右兩個焦點(diǎn),過點(diǎn)F1作垂直于x軸的直線與雙曲線的兩條漸近線分別交于A,B兩點(diǎn),△ABF2是銳角三角形,則該雙曲線的離心率e的取值范圍是( 。
A、(1,2)
B、(1,
5
C、(1,5)
D、(
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(
πx
4
-
π
3
)-cos
πx
4

(1)求f(x)的最小正周期;
(2)設(shè)g(x)=f(-2-x),當(dāng)x∈[0,2]時,求函數(shù)y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為△ABC的三個內(nèi)角,求證:cos(
π
4
-
A
2
)=sin(
π
4
+
A
2
)=cos(
π
4
-
B+C
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∠A的終邊上一點(diǎn)P(15a,8a)(a∈R,且a≠0),求∠A的三個三角函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案