已知棱長為1的正方體ABCD-A1B1C1D1中,E、F分別是B1C1和C1D1的中點,點A1到平面DBEF的距離              

 

【答案】

1

【解析】

試題分析:解:如圖建立空間直角坐標系,

=(1,1,0) ,=(0,,1), =(1,0,1)                                           

 設(shè)平面DBEF的法向量為=(x,y,z),則有:

令x=1,  y=-1,   z=,  取=(1,-1,),則A1到平面DBEF的距離

考點:本題主要考查空間向量的應(yīng)用,綜合考查向量的基礎(chǔ)知識。

點評:法向量在距離方面主要應(yīng)用于點到平面的距離,屬基本題型。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1,直線BD與平面A1BC1所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,E、F分別是B1C1和C1D1的中點,點A1到平面DBEF的距離
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•朝陽區(qū)二模)已知棱長為1的正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別是棱BB1,DD1上的動點,且BE=D1F=λ(0<λ≤
1
2
)
.設(shè)EF與AB所成的角為α,與BC所成的角為β,則α+β的最小值( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知棱長為1的正方體ABCD-A1B1C1D1
(1)線段A1B上是否存在一點P,使得A1B⊥平面PAC?若存在,確定P點的位置,若不存在,說明理由;
(2)點P在A1B上,若二面角C-AP-B的大小是arctan2,求BP的長;
(3)Q點在對角線B1D,使得A1B∥平面QAC,求
B1QQD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1,O為底ABCD對角線的交點.
(Ⅰ)求證:A1C⊥平面AB1D1; 
(Ⅱ)求A1到平面AB1D1的距離.

查看答案和解析>>

同步練習冊答案