(2013•保定一模)選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于N,過N點(diǎn)的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)⊙O的半徑為2
3
,OM=2,求MN的長.
分析:(1)連接ON,則ON⊥PN,由半徑相等可得OB=ON,可得∠OBM=∠ONB,利用切線的性質(zhì)和已知可得∠BOM=∠ONP=90°,進(jìn)而可得∠PMN=∠PNM,再利用切割線定理即可證明;
(2))在Rt△BMO中,由勾股定理可得BM=4,再利用△BND∽BOM,可得BN即可.
解答:(1)證明:連接ON,則ON⊥PN,∵OB=ON,∴∠OBM=∠ONB,
∵PN是⊙O的切線,∴ON⊥NP.
∵BO⊥AC,
∴∠BOM=∠ONP=90°,∴∠OMB=∠MNP.
又∠BMO=∠PMO,∴∠PNM=∠PMN,∴PM═PN.
∵PN為⊙O的切線,∴PN2=PA•PC,∴PM2=PA•PC.
(2)在Rt△BMO中,BM=
OB2+OM2
=
(2
3
)2+22
=4.
延長BO交⊙O與點(diǎn)D,連接DN,
則△BND∽BOM,于是
BO
BN
=
BM
BD
,
2
3
BN
=
4
4
3
,得BN=6.
∴MN=BN-BM=6-4=2.
點(diǎn)評:本題綜合考查了圓的切線的性質(zhì)、切割線定理、三角形相似等基礎(chǔ)知識,考查了分析問題和解決問題的能力、推理能力和計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)已知x,y滿足不等式組
y≤x
x+y≥2
x≤2
,則z=2x+y的最大值與最小值的比值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則|cosA-cosC|的值為
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)已知函數(shù)f (x)=
x2+ax,x≤1
ax2+x,x>1
在R上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)三棱錐V-ABC的底面ABC為正三角形,側(cè)面VAC垂直于底面,VA=VC,已知其正視圖(VAC)的面積為
2
3
,則其左視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)若平面向量
a
,
b
,
c
兩兩所成的角相等,且|
a
|=1,|
b
|=1,|
c
|=3
,則|
a
+
b
+
c
|
等于( 。

查看答案和解析>>

同步練習(xí)冊答案