【題目】如圖,一樓房高為米,某廣告公司在樓頂安裝一塊寬為米的廣告牌,為拉桿,廣告牌的傾角為,安裝過程中,一身高為米的監(jiān)理人員站在樓前觀察該廣傳牌的安裝效果:為保證安全,該監(jiān)理人員不得站在廣告牌的正下方:設(shè)米,該監(jiān)理人員觀察廣告牌的視角.
(1)試將表示為的函數(shù);
(2)求點的位置,使取得最大值.
【答案】(1);(2)當(dāng)米時,取得最大值.
【解析】
(1)作,垂足為;作,垂足為,交于;作,垂足為;在和分別用表示出和,根據(jù),利用兩角和差正切公式可求得結(jié)果;(2)根據(jù)(1)的結(jié)論,設(shè),可得,利用基本不等式可求得時,取最大值,又在上單調(diào)遞增,可知時,最大,從而可得到結(jié)果.
(1)作,垂足為;作,垂足為,交于;作,垂足為,如下圖所示:
在中,
在中,
監(jiān)理人員必須在的右側(cè)
綜上所述:
(2)由(1)可得:
令,則
(當(dāng)且僅當(dāng),即時取等號)
當(dāng),即時,取最大值
又且在上單調(diào)遞增 最大時,最大
當(dāng)米時,取得最大值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如下圖所示.令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的結(jié)論:
①若a<0,則函數(shù)g(x)的圖象關(guān)于原點對稱;
②若a=-1,-2<b<0,則方程g(x)=0有大于2的實根;
③若a≠0,b=2,則方程g(x)=0有兩個實根;
④若a≠0,b=2,則方程g(x)=0有三個實根.
其中,正確的結(jié)論為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點,直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣3x在x處取得極值.
(1)若對任意x∈(0,+∞),f(x)≤m恒成立,求實數(shù)m的取值范圍;
(2)討論函數(shù)F(x)=f(x)+x2+k(k∈R)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的在區(qū)間[t,t+1](t>0)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】貨車欲以xkm/h的速度行駛,去130km遠(yuǎn)的某地,按交通法規(guī),限制x的允許范圍是50≤x≤100,假設(shè)汽油的價格為2元/升,而汽車耗油的速率是升/小時.司機的工資是14元/小時,試問最經(jīng)濟的車速是多少?這次行車往返的總費用最低是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
對函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時 ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數(shù)圖象的最高點共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級有3名同學(xué)報名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標(biāo)的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標(biāo)有共10個數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(2,3,5,7),則選擇甲辨題,否則選擇乙辯題.
(1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.
(2)用X、Y分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了對教師教學(xué)水平和教師管理水平進行評價,從該校學(xué)生中選出300人進行統(tǒng)計.其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評價的列聯(lián)表:
對教師管理水平好評 | 對教師管理水平不滿意 | 合計 | |
對教師教學(xué)水平好評 | |||
對教師教學(xué)水平不滿意 | |||
合計 |
請問是否可以在犯錯誤概率不超過0.001的前提下,認(rèn)為教師教學(xué)水平好評與教師管理水平好評有關(guān)?
(2)若將頻率視為概率,有4人參與了此次評價,設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機變量.
①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com