若f(a)=(3m-1)a+b-2m,當m∈[0,1]時f(a)≤1恒成立,則a+b的最大值為
A.B.C.D.
D

試題分析:先根據(jù)恒成立寫出有關(guān)a,b的約束條件,再在aob系中畫出可行域,設(shè)z=a+b,利用z的幾何意義求最值,只需求出直線a+b=z過可行域內(nèi)的點A時z最大值即可.

解:設(shè)g(m)=f(a)=(3a-2)m+b-a,由于當m∈[0,1]時,g(m)=f(a)=(3a-2)m+b-a≤1恒成立,于是g(0)≤1, g(1)≤1,即b-a≤1, b+2a≤1滿足此不等式組的點(a,b)構(gòu)成圖中的陰影部分,其中A( ,),設(shè)a+b=t,顯然直線a+b=t過點A時,t取得最大值故選D.
點評:本題主要考查了恒成立問題、用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點、定出最優(yōu)解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)判斷的奇偶性;
(2)確定函數(shù)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù),的最大值為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商場準備在五一勞動節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進行促銷活動.
(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)商場對選出的A商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高90元,同時允許顧客有3次抽獎的機會,若中獎,則每次中獎都可獲得一定數(shù)額的獎金.假設(shè)顧客每次抽獎時獲獎與否是等可能的,請問:商場應(yīng)將中獎獎金數(shù)額最高定為多少元,才能使促銷方案對自己有利?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知映射,其中,對應(yīng)法則若對實數(shù),在集合A中不存在原象,則k的取值范圍是                               (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定義在實數(shù)集R上的函數(shù)滿足,且的導(dǎo)數(shù)在R上恒有,則不等式的解集為 _______________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù),則=                                  (   )
A.2B.4C.D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如下左圖所示,則導(dǎo)函數(shù)的圖象可能是(     )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù),則對于不同的實數(shù)a,函數(shù)的單調(diào)區(qū)間個數(shù)不可能是( )
A.1個B.2個C.3個 D.5個

查看答案和解析>>

同步練習冊答案