某工廠生產(chǎn)一種產(chǎn)品的總利潤L(元)是產(chǎn)量x(件)的二次函數(shù)L=-x2+2000x-10000,0<x<1900.
試問:產(chǎn)量是多少時(shí)總利潤最大?最大利潤是多少?
分析:由于函數(shù)
L=-x2+2000x-10000
,配方可得函數(shù)的解析式為-(x-100)2+990000,由此得出,當(dāng)x=100時(shí),函數(shù)L達(dá)到最大值990000元.
解答:解:由于a=-1<0,因此上述二次函數(shù)在(-∞,+∞)上有最大值.
將此函數(shù)表達(dá)式配方得,
L=-x2+2000x-10000
=-(x2-2000x+10002-10002)-10000=-(x-1000)2+990000.  
由此得出,當(dāng)x=1000時(shí),函數(shù)L達(dá)到最大值990000元,
答:當(dāng)產(chǎn)量為1000件時(shí),總利潤最大,最大利潤99萬元.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,求函數(shù)的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品的成本費(fèi)共由三部分組成:①原材料費(fèi)每件50元;②職工工資支出7500+20x元;③電力與機(jī)器保養(yǎng)等費(fèi)用為x2-30x+600元:其中x是該廠生產(chǎn)這種產(chǎn)品的總件數(shù).
(I)把每件產(chǎn)品的成本費(fèi)p(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(Ⅱ)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過170件且能全部銷售,根據(jù)市場調(diào)查,每件產(chǎn)品的銷售價(jià)為Q(x)(元),且
Q(x)=1240-
130
x2
.試問生產(chǎn)多少件產(chǎn)品,總利潤最高?并求出最高總利潤.(總利潤=總銷售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品,總利潤最高?(總利潤=總銷售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品的固定成本是20000元,每生產(chǎn)一件產(chǎn)品需要另外投入100元,市場銷售部進(jìn)行調(diào)查后得知,市場對(duì)這種產(chǎn)品的年需求量為1000件,且銷售收入函數(shù)g(t)=-
12
t2+1000t
,其中t是產(chǎn)品售出的數(shù)量,且0≤t≤1000.(利潤=銷售收入-成本)
(1)若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式;
(2)當(dāng)年產(chǎn)量為多少時(shí),工廠的利潤最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品的成本費(fèi)由三部分組成:①職工工資固定支出12500元;②原材料費(fèi)每件40元;③電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,其中x是該廠生產(chǎn)這種產(chǎn)品的總件數(shù).
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售.根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品,總利潤最高?(總利潤=總銷售額-總的成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案