10.函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{lg(x+1)}$的定義域是( 。
A.(-1,0)∪(0,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

分析 由根式內部的代數(shù)式大于等于0,分式的分母不為0,對數(shù)式的真數(shù)大于0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{x+3≥0}\\{x+1>0}\\{x+1≠0}\end{array}\right.$,解得x>-1且x≠0.
∴函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{lg(x+1)}$的定義域是(-1,0)∪(0,+∞).
故選:A.

點評 本題考查函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.設集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在某樣本的頻率分布直方圖中,共有7個小長方形,若第三個小長方形的面積為其他6個小長方形的面積和的$\frac{1}{4}$,且樣本容量為100,則第三組數(shù)據(jù)的頻數(shù)為( 。
A.25B.0.2C.0.25D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如果關于x的方程x2-2(1-m)x+m2=0有兩實數(shù)根α,β,則α+β的取值范圍為(  )
A.α+β≥$\frac{1}{2}$B.α+β≤$\frac{1}{2}$C.α+β≥1D.α+β≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知四面體的四個頂點S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),求從頂點S向底面ABC所引高的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)滿足f(logax)=$\frac{a}{{a}^{2}-1}$(x-x-1),其中a>0且a≠1.
(1)對于函數(shù)f(x),當x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數(shù)m的取值集合;
(2)當x∈(-∞,2]時,f(x)-$\frac{5}{2}$的值恒為負數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.矩形ABCD的頂點A,B在直線y=2x+m上,C,D在拋物線y2=4x上,該矩形的外接圓方程為x2+y2-x-4y-t=0.
(1)求矩形ABCD對角線交點M的坐標;
(2)求此矩形的長,并求m,t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設全集U是實數(shù)集R,M={x|2x≥4},N={x|1<x<3},則集合M∩N是( 。
A.{x|2<x<3}B.{x|2≤x<3}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知△ABC的內角A、B、C對的邊分別為a、b、c,若b=3,2c=a+3$\sqrt{2}$,則cosC最小值為$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

同步練習冊答案