【題目】為了研究黏蟲(chóng)孵化的平均溫度(單位: )與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過(guò)試驗(yàn)得到如下6組數(shù)據(jù):
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
平均溫度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天數(shù) | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:
經(jīng)計(jì)算得,
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說(shuō)明理由)
(2)殘差絕對(duì)值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到0.1)
,.
【答案】(1)應(yīng)該選擇模型①;(2)
【解析】試題分析:(1)第(1)問(wèn),由于模型①的殘差帶比較窄,在x軸附近,所以說(shuō)明擬合效果好,故選模型①. (2)第(2)問(wèn),先計(jì)算出最小二乘法公式的各個(gè)基本量,再代入公式計(jì)算,得到關(guān)于的線性回歸方程.
試題解析:
(1)應(yīng)該選擇模型①.
(2)剔除異常數(shù)據(jù),即組號(hào)為4的數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù)= (18×6-18)=18;
(12.25×6-13.5)=12.
=1283.01-18×13.5=1040.01;
=1964.34-182=1640.34.
12+1.97×18≈47.5,
所以y關(guān)于x的線性回歸方程為: =-2.0x+47.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖象大致是( )
A. B.
C. D.
【答案】D
【解析】當(dāng)時(shí), ,所以去掉A,B;
因?yàn)?/span>,所以,因此去掉C,選D.
點(diǎn)睛:有關(guān)函數(shù)圖象識(shí)別問(wèn)題的常見(jiàn)題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);③由函數(shù)的奇偶性,判斷圖象的對(duì)稱(chēng)性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實(shí)際情景探究函數(shù)圖象.關(guān)鍵是將問(wèn)題轉(zhuǎn)化為熟悉的數(shù)學(xué)問(wèn)題求解,要注意實(shí)際問(wèn)題中的定義域問(wèn)題.
【題型】單選題
【結(jié)束】
8
【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱(chēng)之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( 。
A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)
B. 函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)
C. 函數(shù)的最小正周期為
D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)是所在平面內(nèi)一點(diǎn),下列說(shuō)法正確的是( )
A.若,則的形狀為等邊三角形
B.若,則點(diǎn)是邊的中點(diǎn)
C.過(guò)任作一條直線,再分別過(guò)頂點(diǎn)作的垂線,垂足分別為,若恒成立,則點(diǎn)是的垂心
D.若則點(diǎn)在邊的延長(zhǎng)線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是的中點(diǎn).
(1)若,求向量與向量的夾角的余弦值;
(2)若是線段上任意一點(diǎn),且,求的最小值;
(3)若點(diǎn)是內(nèi)一點(diǎn),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線,曲線,點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系.
(1)求曲線和的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)的直線交于點(diǎn),交于點(diǎn),若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線與圓相交于不同的兩點(diǎn),點(diǎn)是線段的中點(diǎn)。
(1)求直線的方程;
(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點(diǎn),不經(jīng)過(guò)點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域?yàn)?/span>R,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿(mǎn)足:對(duì)任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱(chēng)函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當(dāng)m≠0時(shí),探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),關(guān)于函數(shù)的性質(zhì),有以下四個(gè)推斷:
①的定義域是;
②的值域是;
③是奇函數(shù);
④是區(qū)間(0,2)內(nèi)的增函數(shù).
其中推斷正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com