已知面積為S的凸四邊形中,四條邊長(zhǎng)分別記為a1,a2,a3,a4,點(diǎn)P為四邊形內(nèi)任意一點(diǎn),且點(diǎn)P到四邊的距離分別記為h1h2,h3,h4,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,則h1+2h2+3h3+4h4=
2S
k
類(lèi)比以上性質(zhì),體積為y的三棱錐的每個(gè)面的面積分別記為Sl,S2,S3,S4,此三棱錐內(nèi)任一點(diǎn)Q到每個(gè)面的距離分別為H1,H2,H3,H4,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=K,則H1+2H2+3H3+4H4=( 。
A、
4V
K
B、
3V
K
C、
2V
K
D、
V
K
考點(diǎn):類(lèi)比推理
專(zhuān)題:計(jì)算題,推理和證明
分析:
a1
1
=
a2
2
=
a3
3
=
a4
4
=k可得ai=ik,P是該四邊形內(nèi)任意一點(diǎn),將P與四邊形的四個(gè)定點(diǎn)連接,得四個(gè)小三角形,四個(gè)小三角形面積之和為四邊形面積,即采用分割法求面積;同理對(duì)三棱值得體積可分割為5個(gè)已知底面積和高的小棱錐求體積.
解答: 解:根據(jù)三棱錐的體積公式V=
1
3
Sh,
得:
1
3
S1H1+
1
3
S2H2+
1
3
S3H3+
1
3
S4H4=V
即S1H1+2S2H2+3S3H3+4S4H4=3V,
∴H1+2H2+3H3+4H4=
3V
K
,
故選B.
點(diǎn)評(píng):本題主要考查三棱錐的體積計(jì)算和運(yùn)用類(lèi)比思想進(jìn)行推理的能力.解題的關(guān)鍵是理解類(lèi)比推理的意義,掌握類(lèi)比推理的方法.平面幾何的許多結(jié)論,可以通過(guò)類(lèi)比的方法,得到立體幾何中相應(yīng)的結(jié)論.當(dāng)然,類(lèi)比得到的結(jié)論是否正確,則是需要通過(guò)證明才能加以肯定的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2的直線交雙曲線的右支于P,Q兩點(diǎn),若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈R,則“x<1”是“|x|<1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線x2-2y2=1的離心率是( 。
A、
3
2
B、
6
2
C、
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
y2
4
-
x2
b2
=1(b>0)的離心率為
2
,則此雙曲線的焦點(diǎn)到漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校對(duì)全校1600名男女學(xué)生的視力狀況進(jìn)行調(diào)查,現(xiàn)用分層抽樣的方法抽取一個(gè)容量是200的樣本,已知女生比男生少抽10人,則該校的女生人數(shù)是
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=2,則2sin2θ+sinθcosθ-cos2θ=( 。
A、-
4
3
B、-
6
5
C、
4
5
D、
9
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(x)的定義域?yàn)?div id="5vjbzrf" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5個(gè)人排成一排,共有
 
種不同的排法.

查看答案和解析>>

同步練習(xí)冊(cè)答案