在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在圓C2:x2+(y-5)2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線y=-2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P為直線y=-4上的一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D,證明:四點(diǎn)A,B,C,D的橫坐標(biāo)之積為定值.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:圓錐曲線中的最值與范圍問(wèn)題
分析:(Ⅰ)設(shè)點(diǎn)M(x,y),由已知條件推導(dǎo)出
x2+(y-5)2
=y+5
,由此能求出曲線C1的方程.
(Ⅱ)當(dāng)點(diǎn)P在直線y=-4上運(yùn)動(dòng)時(shí),設(shè)P(x0,-4),切線方程為kx-y-kx0-4=0,所以(x02-9)k2+18x0k+72=0,設(shè)過(guò)P所作的兩條切線PA,PC的斜率分別為k1,k2,則k1+k2=-
18x0
x02-9
,k1k2=-
72
x02-9
,由
k1x-y-k1x0-4=0
x2=20y
,得x2-20k1x+20(k1x0+4)=0,設(shè)四點(diǎn)A、B、C、D的橫向聯(lián)合坐標(biāo)分別是x1,x2,x3,x4,則x1x2=20(k1x0+4),x3x4=20(k2x0+4),由此能證明四點(diǎn)A,B,C,D的橫坐標(biāo)之積為定值.
解答: 解:(Ⅰ)設(shè)點(diǎn)M(x,y),
由已知得|y+2|=
x2+(y-5)2
-3
,
且圓C2上的點(diǎn)位于直線y=-2的上方,
于是y+2>0,
x2+(y-5)2
=y+5
,
化簡(jiǎn)得曲線C1的方程為:x2=20y.
(Ⅱ)證明:當(dāng)點(diǎn)P在直線y=-4上運(yùn)動(dòng)時(shí),設(shè)P(x0,-4),
由題意知x0≠±3,過(guò)P且于圓C2相切的直線的斜率存在,
每條切線都與拋物線有兩個(gè)交點(diǎn),
切線方程為y+4=k(x-x0),即kx-y-kx0-4=0,
|-5-kx0-4|
k2+1
=3

整理,得(x02-9)k2+18x0k+72=0,①
設(shè)過(guò)P所作的兩條切線PA,PC的斜率分別為k1,k2,
則k1,k2是方程①的兩個(gè)實(shí)根,
k1+k2=-
18x0
x02-9
k1k2=-
72
x02-9
,②
k1x-y-k1x0-4=0
x2=20y
,得x2-20k1x+20(k1x0+4)=0,③
設(shè)四點(diǎn)A、B、C、D的橫向聯(lián)合坐標(biāo)分別是x1,x2,x3,x4,
則x1,x2是方程③的兩個(gè)實(shí)根,
∴x1x2=20(k1x0+4),④
同理,x3x4=20(k2x0+4),⑤
由②④⑤三式得:
x1x2x3x4=400(k1x0+4)(k2x0+4)
=400[k1k2x02+4x0(k1+k2)+16]
=400(
72x02
x02-9
-4x0
18x0
x02-9
+16

=400×16=6400.
∴當(dāng)點(diǎn)P在直線y=-4上運(yùn)動(dòng)時(shí),四點(diǎn)A、B、C、D的橫坐標(biāo)之積為定值6400.
點(diǎn)評(píng):本題考查曲線方程的求法,考查四點(diǎn)的橫坐標(biāo)之積為定值的證明,解題時(shí)要認(rèn)真審題,注意直線方程、韋達(dá)定理等知識(shí)點(diǎn)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題或等式正確的是( 。
A、若f(x)是奇函數(shù),則f(0)=0
B、∫
 
2
0
(-x+1)dx=0
C、函數(shù)f(x)=cos2x是周期為π的減函數(shù)
D、若a∈R,則“a2<a”是“a>0”的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)+b的圖象如圖所示,則S=f(0)+f(1)+…+f(2014)等于( 。
A、0
B、
4025
2
C、
4029
2
D、
4031
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a,b,c均為正實(shí)數(shù).
(Ⅰ)證明:a3+b3≥a2b+ab2
(Ⅱ)當(dāng)a+b+c=1時(shí),證明:(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M的對(duì)稱軸為坐標(biāo)軸,且圓x2+y2+2
2
y=0的圓心為橢圓M的一個(gè)焦點(diǎn),又點(diǎn)A(1,
2
)在橢圓M上.
(1)求橢圓M的方程;
(2)已知直線l的斜率為
2
,若直線l與橢圓M交于B、C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知P是圓O外一點(diǎn),PA為圓O的切線,A為切點(diǎn).割線PBC經(jīng)過(guò)圓心O,若PA=3
3
,PC=9,則∠ACP=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+a,g(x)=x-a.
(Ⅰ)當(dāng)直線y=g(x)恰好為曲線y=f(x)的切線時(shí),求a的值;
(Ⅱ)若不等式kg(x+a)≥f(x)-a在(0,+∞)上恒成立,求k的最小值;
(Ⅲ)當(dāng)a>0時(shí),若函數(shù)F(x)=f(x)•g(x)在區(qū)間[e-
3
2
,1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校自主招生面試成績(jī)的莖葉圖和頻率分布直方圖均受到不同程度的破壞,其可見(jiàn)部分信息如圖所示,據(jù)此解答下列問(wèn)題;
(Ⅰ)求參加此次高校自主招生面試的人數(shù)n、面試成績(jī)的中位數(shù)及分?jǐn)?shù)分別在[80,90),[90,100)內(nèi)的人數(shù);
(Ⅱ)若從面試成績(jī)?cè)赱80,100)內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查,求恰好有一人分?jǐn)?shù)在[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PC切⊙O于點(diǎn)C,割線PAB經(jīng)過(guò)圓心O,弦CD⊥AB于點(diǎn)E,已知⊙O的半徑為3,PA=2,則OE=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案