【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得
時(shí),
的取值范圍為
,求
的取值范圍
【答案】(1)
(2)
【解析】
(1)由函數(shù)為奇函數(shù)且函數(shù)在處有意義,則
,即可求得
,再檢驗(yàn)即可得解,然后再求函數(shù)的定義域;
(2)分類討論函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性求函數(shù)的最值,再根據(jù)方程的解的個(gè)數(shù)求的取值范圍即可得解.
解:(1)由函數(shù)為奇函數(shù),顯然函數(shù)在
處有意義, 則
,則
,即
,
檢驗(yàn)當(dāng)時(shí),
顯然為奇函數(shù),故
;
由且
,解得
,故函數(shù)的定義域?yàn)?/span>
;
(2)由,
①當(dāng)時(shí),函數(shù)
在
為減函數(shù),
又存在區(qū)間,使得
時(shí),
的取值范圍為
,
則,
,即
,
,又
,則
,即
,不合題意,
②當(dāng)時(shí),函數(shù)
在
為增函數(shù),
又存在區(qū)間,使得
時(shí),
的取值范圍為
,
則,
,
即在
有兩個(gè)不等實(shí)數(shù)解,
即在
有兩個(gè)不等實(shí)數(shù)解,
設(shè),
,
則,則
,解得
,
又,即
,
綜合①②可得:的取值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長(zhǎng)均相等,
為
的中點(diǎn).
、
分別是
、
上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足
.當(dāng)
運(yùn)動(dòng)時(shí),下列結(jié)論中正確的是______ (填上所有正確命題的序號(hào)).
①平面平面
;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面
所成的銳二面角范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段
上取兩個(gè)點(diǎn)
,
,使得
,以
為一邊在線段
的上方做一個(gè)正六邊形,然后去掉線段
,得到圖2中的圖形;對(duì)圖2中的最上方的線段
作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為
,現(xiàn)給出有關(guān)數(shù)列
的四個(gè)命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對(duì)任意的正整數(shù)
,都有
;
④存在最大的正數(shù),使得對(duì)任意的正整數(shù)
,都有
.
其中真命題的序號(hào)是________________(請(qǐng)寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖像如圖所示,考查下列說(shuō)法:
①的圖像關(guān)于直線
對(duì)稱
②的圖像關(guān)于點(diǎn)
對(duì)稱
③若關(guān)于x的方程在上
有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)
的取值范圍為
④將函數(shù)的圖像向右平移
個(gè)單位可得到函數(shù)
的圖像
其中正確個(gè)數(shù)的是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點(diǎn),F為C的右焦點(diǎn),過(guò)F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.若
OMN為直角三角形,則|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三邊長(zhǎng)分別為
,
,
,M是AB邊上的點(diǎn),P是平面ABC外一點(diǎn).給出下列四個(gè)命題:①若
平面ABC,則三棱錐
的四個(gè)面都是直角三角形;②若
平面ABC,且M是邊AB的中點(diǎn),則有
;③若
,
平面ABC,則
面積的最小值為
;④若
,P在平面ABC上的射影是
內(nèi)切圓的圓心,則點(diǎn)P到平面ABC的距離為
.其中正確命題的序號(hào)是________.(把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
,斜率為
的直線
經(jīng)過(guò)
焦點(diǎn),且與
交于
兩點(diǎn)滿足
.
(1)求拋物線的方程;
(2)已知線段的垂直平分線與拋物線
交于
兩點(diǎn),
為線段
的中點(diǎn),記點(diǎn)
到直線
的距離為
,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.已知函數(shù)g(x)=x2與h(x)=2x﹣b是定義在[0,1]上的函數(shù).
(1)試問(wèn)函數(shù)g(x)是否為G函數(shù)?并說(shuō)明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)b組成的集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com