(本小題滿分12分)
如圖(1)是一正方體的表面展開圖,和是兩條面對角線,請在圖(2)的正方體中將和畫出來,并就這個正方體解決下面問題.
(Ⅰ)求證:平面;
(Ⅱ)求證:⊥平面;
(Ⅲ)求二面角的大。
解:MN、PB的位置如右圖示. ……………………………………………………(2分)
(Ⅰ)∵ND//MB且ND=MB,∴四邊形NDBM為平行四邊形.
∴MN//DB.
∵BD平面PBD,MN,∴MN//平面PBD.(5分)
(Ⅱ)∵QC⊥平面ABCD,BD平面ABCD,∴BD⊥QC.
又∵BD⊥AC,∴BD⊥平面AQC.
∵AQ面AQC,∴AQ⊥BD.
同理可得AQ⊥PB.
∵BDPD=B,∴AQ⊥面PDB. …………………………(8分)
(Ⅲ)解法1:分別取DB、MN中點E、F,連結PE、EF、PF.
∵在正方體中,PB=PD,∴PE⊥DB.
∵四邊形NDBM為矩形,∴EF⊥DB.
∴∠PEF為二面角P—DB—M為平面角.
∵EF⊥平面PMN,∴EF⊥PF.
設正方體的棱長為a,則在直角三角形EFP中,
∵,∴.
.…………………………(12分)
解法2:設正方體的棱長為a,以D為坐標原點建立空間直
角坐標系如圖.
則點A(a,0,0),P(a,0,a),Q(0,a,a).
∴.
∵PQ⊥面DBM,由(2)知AQ⊥面PDB.
∴分別為平面PDB、平面DBM的法向量.
∴.
∴.…………………………(12分)
解析
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據(jù)市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com