已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q;

【解析】(1)離心率為=,橢圓的短半軸為半徑的圓與直線x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直線PB的方程為y=k(x-4)

 

【答案】

:(Ⅰ)由題意知e==,所以e2===.即a2=b2

又因?yàn)閎==,所以a2=4,b2=3.故橢圓的方程為=1.…4分

(Ⅱ)由題意知直線PB的斜率存在,設(shè)直線PB的方程為y=k(x-4),和橢圓方程聯(lián)立解決.

,得(4k2+3)x2-32k2x+64k2-12=0.  ①…6分

設(shè)點(diǎn)B(x1,y1),E(x2,y2),則A(x1,-y1).直線AE的方程為y-y2=(x-x2).令y=0,得x=x2-.將y1=k(x1-4),y2=k(x2-4)代入,

整理,得x=.  ②…8分

由①得x1+x2=,x1x2=…10分   代入②整理,得x=1.

所以直線AE與x軸相交于定點(diǎn)Q(1,0)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年四川省資陽市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)經(jīng)過(1,1)與(,)兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足|MA|=|MB|.求證:++為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高考數(shù)學(xué)壓軸卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點(diǎn)A,并與橢圓C交與不同的兩點(diǎn)P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點(diǎn),則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年吉林省高考數(shù)學(xué)仿真模擬試卷9(理科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
(1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點(diǎn),求e的大;
(2)在(1)的條件下,設(shè)橢圓的上頂點(diǎn)為A,左焦點(diǎn)為F,過點(diǎn)A與AF垂直的直線交x軸的正半軸于B點(diǎn),過A、B、F三點(diǎn)的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)總復(fù)習(xí)備考綜合模擬試卷(3)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
(1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點(diǎn),求e的大小;
(2)在(1)的條件下,設(shè)橢圓的上頂點(diǎn)為A,左焦點(diǎn)為F,過點(diǎn)A與AF垂直的直線交x軸的正半軸于B點(diǎn),過A、B、F三點(diǎn)的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省攀枝花市高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點(diǎn)分別為

(1)求橢圓方程;

(2)若直線軸交于點(diǎn)T,P為上異于T的任一點(diǎn),直線分別與橢圓交于M、N兩點(diǎn),試問直線MN是否通過橢圓的焦點(diǎn)?并證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案