如圖,在平面直角坐標系中,過軸正方向上一點任作一直線,與拋物線相交于兩點.一條垂直于軸的直線,分別與線段和直線交于點

(1)若,求的值;

(2)若為線段的中點,求證:為此拋物線的切線;

(3)試問(2)的逆命題是否成立?說明理由.

 

【答案】

解:(1)設直線的方程為

將該方程代入

,,則

因為,解得,

(舍去).故

   (2)由題意知,直線的斜率為

的導數(shù)為,所以點處切線的斜率為,

因此,為該拋物線的切線.

(3)(2)的逆命題成立,證明如下:

為該拋物線的切線,則,

又直線的斜率為,所以

,因,有

故點的橫坐標為,即點是線段的中點. 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標平面內,實數(shù)對(x,y)所示的區(qū)域在直線y=4的下側部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1、如圖,在直角坐標平面內有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面內有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為(  )
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標平面內,射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,一定長m的線段,其端點A、B分別在x軸、y軸上滑動,設點M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案