以雙曲線
x2
3
-
y2
6
=1
的右焦點(diǎn)為焦點(diǎn)的拋物線標(biāo)準(zhǔn)方程為( 。
A、y2=12x
B、x2=12y
C、y2=6x
D、x2=6y
分析:先由雙曲線
x2
3
-
y2
6
=1
的方程,根據(jù)焦點(diǎn)坐標(biāo)求得的右焦點(diǎn)坐標(biāo),進(jìn)而求得拋物線標(biāo)準(zhǔn)方程中的p,則拋物線方程可得.
解答:解:依題意可知由雙曲線
x2
3
-
y2
6
=1
的方程
得:右焦點(diǎn)坐標(biāo)是F(3,0),
p
2
=3,p=6,
故拋物線方程為y2=12x
故選A
點(diǎn)評:本題主要考查了拋物線的標(biāo)準(zhǔn)方程.解題的時候注意拋物線的焦點(diǎn)在x軸還是在y軸.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以雙曲線
x23
-y2=1
的一條準(zhǔn)線為準(zhǔn)線,頂點(diǎn)在原點(diǎn)的拋物線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn)且以雙曲線
x23
-y2=1
的右準(zhǔn)線為準(zhǔn)線的拋物線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)以雙曲線
x23
-y2=1
的右焦點(diǎn)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是
y2=8x
y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•梅州二模)以雙曲線
x2
3
-
y2=1的左焦點(diǎn)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C以雙曲線
x23
-y2=1
的焦點(diǎn)為頂點(diǎn),以雙曲線的頂點(diǎn)為焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于點(diǎn)M,N兩點(diǎn)(M,N不是左右頂點(diǎn)),且以線段MN為直徑的圓過橢圓C左頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案