6.(1)已知A(-2,-3),B(3,0),直線l過(guò)點(diǎn)P(-1,2),且與線段AB相交,求直線l的斜率K的取值范圍;
(2)光線從點(diǎn)A(-3,4)射出,到x軸上的點(diǎn)B后,被x軸反射到y(tǒng)軸上的點(diǎn)C,又被y軸反射,這時(shí)反射光線恰好過(guò)點(diǎn)D(-1,6),求光線BC所在直線的斜率.

分析 (1)先根據(jù)A,B,P的坐標(biāo)分別求得直線AP和BP的斜率,設(shè)L與線段AB交于M點(diǎn),M由A出發(fā)向B移動(dòng),斜率越來(lái)越大,期間會(huì)出現(xiàn)AM平行y軸,此時(shí)無(wú)斜率.求得k的一個(gè)范圍,過(guò)了這點(diǎn)M,斜率由-∞增大到直線BP的斜率K.求得k的另一個(gè)范圍,最后綜合可得答案
(2)先求點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)為D′,直接連接A′D′的方程就是BC的方程

解答 解:(1)直線AP的斜率k=$\frac{-3-2}{-2+1}$=5
直線BP的斜率k=$\frac{0-2}{3+1}=-\frac{1}{2}$,
設(shè)L與線段AB交于M點(diǎn),M由A出發(fā)向B移動(dòng),斜率越來(lái)越大,
在某點(diǎn)處會(huì)AM平行y軸,此時(shí)無(wú)斜率.即k≥5,
過(guò)了這點(diǎn),斜率由-∞增大到直線BP的斜率-$\frac{1}{2}$.即k≤-$\frac{1}{2}$
直線l斜率取值范圍為(-∞,-$\frac{1}{2}$]∪[5,+∞).
(2)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為
A′(-3,-4),
點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn)為
D′(1,6),
由入射角等于反射角及對(duì)頂角相等可知A′、D′都在直線BC上,
∴BC的方程為5x-2y+7=0.

點(diǎn)評(píng) 本題主要考查了直線的斜率以及對(duì)稱問(wèn)題,解題的關(guān)鍵是利用了數(shù)形結(jié)合、轉(zhuǎn)化思想,解題過(guò)程較為直觀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx-$\frac{1}{2}$(ω>0),其最小正周期為$\frac{π}{2}$.
(1)求f(x)在區(qū)間[-$\frac{π}{8}$,$\frac{π}{4}}$]上的減區(qū)間;
(2)將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得的圖象向右平移$\frac{π}{4}$個(gè)單位,得到函數(shù)g(x)的圖象,若關(guān)于x的方程g(x)+k=0在區(qū)間[0,$\frac{π}{2}}$]上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知曲線y=$\frac{x^2}{4}$-lnx的一條切線的斜率為-$\frac{1}{2}$,則切點(diǎn)的橫坐標(biāo)為(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,B=$\frac{π}{4}$,BC邊上的高等于$\frac{1}{3}$BC,則cosA=-$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,M為棱BB1的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面MAC
C.異面直線BC1與AC所成的角為60°D.MO與底面所成角為90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且有(2+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)求角A的值;
(Ⅱ)求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若sinA:sinB:sinC=7:8:13,則角C=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$-x的零點(diǎn)在區(qū)間(n,n+1)(n∈N)內(nèi),則n=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=2x+5x的零點(diǎn)所在大致區(qū)間為( 。
A.(0,1)B.(1,2)C.(-1,0)D.(-2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案