[
n
]
表示不超過
n
的最大整數(shù).
S1=[
1
]+[
2
]+[
3
]=3,
S2=[
4
]+[
5
]+[
6
]+[
7
]+[
8
]=10,
S3=[
9
]+[
10
]+[
11
]+[
12
]+[
13
]+[
14
]+[
15
]=21,…,

那么S8=
136
136
分析:由已知等式中的右邊的數(shù)3,10,21,…,我們易得到3=1×3,10=2×5,21=3×7,…由此我們可以推論出一個(gè)一般的結(jié)論:對于n∈N*,Sn=n•(2n+1),由此不難得出答案.
解答:解:由已知中等式:
S1=[
1
]+[
2
]+[
3
]=3,
S2=[
4
]+[
5
]+[
6
]+[
7
]+[
8
]=10,
S3=[
9
]+[
10
]+[
11
]+[
12
]+[
13
]+[
14
]+[
15
]=21,…,

其中3=1×3,10=2×5,21=3×7,…
由此我們可以推論出一個(gè)一般的結(jié)論:
對于n∈N*,Sn=n•(2n+1),
那么S8=8•(2×8+1)=136
故答案為:136.
點(diǎn)評:歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=[x[x]](x∈R),其中[x]表示不超過x的最大整數(shù).
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判斷f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域?yàn)锳n,現(xiàn)將An,中的元素的個(gè)數(shù)記為an.試求an+1與an的關(guān)系,并進(jìn)一步求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)f(x)=[x[x]](x∈R),其中[x]表示不超過x的最大整數(shù).
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判斷f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域?yàn)锳n,現(xiàn)將An,中的元素的個(gè)數(shù)記為an.試求an+1與an的關(guān)系,并進(jìn)一步求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:函數(shù)f(x)=[x[x]](x∈R),其中[x]表示不超過x的最大整數(shù).
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判斷f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域?yàn)锳n,現(xiàn)將An,中的元素的個(gè)數(shù)記為an.試求an+1與an的關(guān)系,并進(jìn)一步求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市宣武區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知:函數(shù)f(x)=[x[x]](x∈R),其中[x]表示不超過x的最大整數(shù).
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判斷f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域?yàn)锳n,現(xiàn)將An,中的元素的個(gè)數(shù)記為an.試求an+1與an的關(guān)系,并進(jìn)一步求出an的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案