設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,若a,b,c成等差數(shù)列,且5sinA=3sinB,則角C為( 。
A、
π
3
B、
π
6
C、
3
D、
6
考點:正弦定理
專題:解三角形
分析:利用a,b,c成等差數(shù)列得到a,b和c的關(guān)系式,利用正弦定理和已知等式求得a和b的關(guān)系式,分別設(shè)出a,b和c,最后利用余弦定理即可求得cosC的值,則C可得.
解答: 解:∵a,b,c成等差數(shù)列,
∴2b=a+c,
∵5sinA=3sinB,
∴由正弦定理得5a=3b,
設(shè)a=3t,b=5t,則c=7t,
∴cosC=
a2+b2-c2
2ab
=
9t2+25t2-49t2
2×3×5t2
=-
1
2
,
∵0<C<π,
∴C=
3

故選C.
點評:本題主要考查了正弦定理和余弦定理的應(yīng)用.解題過程中巧妙的運用了正弦定理和余弦定理完成了邊和角問題的轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2+2x-3>0},N={x|y=
x-1
ln(2x-x2)
},則(∁RM)∪N為(  )
A、[-3,2)
B、(-2,3]
C、[-3,1)∪(1,2)
D、[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x
+
1
3x
10的展開式中常數(shù)項為( 。
A、120B、210
C、252D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a3+a4=a12,a1+a2=10,則a2+a4+…a100的值等于(  )
A、1300
B、1350
C、2650
D、
28000
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,則輸出的結(jié)果為( 。
A、189B、381
C、93D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足
1+z
1-z
=i(i為虛數(shù)單位),則z的虛部為(  )
A、1B、-iC、iD、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,若向量
a
=(x,y),向量
b
=(3,-1).設(shè)z表示向量
a
在向量
b
方向上的投影,則z的最大值是( 。
A、-
1
10
B、-
3
2
10
C、
6
10
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F是橢圓
x2
1+a2
+y2
=1(a>0)的右焦點,動點P到點F的距離等于到直線x=-a的距離.
(1)求點P的軌跡C的方程;
(2)設(shè)過點F任作一直線與點P的軌跡交于A、B兩點,直線OA、OB與直線x=-a分別交于點S、T(O為坐標(biāo)原點),試判斷
FS
FT
是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)在一個周期內(nèi)的圖象如圖所示,P是圖象的最髙點,Q是圖象的最低點,M是線段PQ與x軸的交點,且cos∠POM=
5
5
,|OP|=
5
,|PQ|=4
2

(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移2個單位后得到函數(shù)y=g(x)的圖象,試求函數(shù)h(x)=f(x)•g(x)圖象的對稱軸方程.

查看答案和解析>>

同步練習(xí)冊答案