(本題滿分16分)

已知等差數(shù)列的前項(xiàng)和為,且,數(shù)列滿足:

,,

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè),,證明: 

 

【答案】

(1),(2)根據(jù)錯(cuò)位相減法來進(jìn)行求和,得到,然后借助于來證明。

【解析】

試題分析:解:(1)由題意得,解得     ∴  …………………3分

,得

∴數(shù)列是等比數(shù)列,其中首項(xiàng),公比,   

.                                      ……………………6分

注:也可以累乘處理

(2)①,  ②

∴②-①得:

                                               ………………9分

          

                   ……………………16分

考點(diǎn):本試題考查了數(shù)列的知識(shí)。

點(diǎn)評(píng):該試題涉及了數(shù)列的通項(xiàng)公式和數(shù)列求和的運(yùn)用。解決的關(guān)鍵是熟練的運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式來求解通項(xiàng)公式,同時(shí)能根據(jù)錯(cuò)位相減法求和,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)、是常數(shù),且),對(duì)定義域內(nèi)任意),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案