已知平面內(nèi)三點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O為坐標(biāo)原點(diǎn).
(1)若
AC
BC
=-1
,求sin(α+
π
4
)
的值.
(4)若|
OA
+
OC
|=
13
,且α∈(0,π),求
OB
OC
的夾角.
分析:(1)由已知中A(3,0),B(0,3),C(cosα,sinα),我們易求出向量
AC
,
BC
的坐標(biāo),根據(jù)
AC
BC
=-1
,利用同角三角函數(shù)關(guān)系式及輔助角公式,易求出sin(α+
π
4
)
的值.
(2)由|
OA
+
OC
|=
13
,代入向量模的計(jì)算公式,可以求出cosα,sinα,進(jìn)而求出C點(diǎn)坐標(biāo),代入向量夾角公式,即可得到答案.
解答:解:(1)∵
AC
=(cosα-3,sinα),
BC
=(cosα,sinα-3)

AC
BC
=(cosα-3)cosα+sinα(sinα-3)=-1
…(3分)
得cos2α+sin2α-3(cosα+sinα)=-1
cosα+sinα=
2
3
,…(5分)
sin(α+
π
4
)=
2
3
…(7分)
(2)∵|
OA
+
OC
|=
13
.∴(3+cosα)2+sin2α=13,
cosα=
1
2
,
∵α∈(0,π),∴α=
π
3
,sinα=
3
2
,…(9分)
C(
1
2
,
3
2
)
,∴
OB
OC
=
3
3
2
…(11分)
設(shè)
OB
OC
的夾角為θ
,則cosθ=
OB
OC
|
OB
||
OC
|
=
3
3
2
3
=
3
2

θ∈(0,π)∴θ=
π
6
即為所求.…(14分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是兩角和與差的正弦函數(shù),數(shù)量積表示兩個(gè)向量的夾角,其中(1)的關(guān)鍵是根據(jù)向量數(shù)量積公式,得到關(guān)于α 的三角方程,(2)的關(guān)鍵是求出cosα,sinα.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)三點(diǎn)A(2,-3),B(4,3),C(5,a)共線(xiàn),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)三點(diǎn)A(2,2),B(1,3),C(7,x)滿(mǎn)足
BA
AC
,則x的值為(  )
A、3B、6C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省寧波市鎮(zhèn)海中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知平面內(nèi)三點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O為坐標(biāo)原點(diǎn).
(1)若,求的值.
(4)若的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省寧波市鎮(zhèn)海中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知平面內(nèi)三點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O為坐標(biāo)原點(diǎn).
(1)若,求的值.
(4)若的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案