若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+)=f(-t+).記g(x)=Acos(ωx+φ)-1,則g()=   
【答案】分析:本題考查的三角函數(shù)的對稱性,由對任意實數(shù)t,都有f(t+)=f(-t+).我們易得:函數(shù)f(x)的圖象關于直線x=對稱,則ω+φ的終邊落在Y軸上,將其代入g(x)=Acos(ωx+φ)-1,我們易得g()的值.
解答:解:∵對任意實數(shù)t,都有f(t+)=f(-t+).
函數(shù)f(x)的圖象關于直線x=對稱
又∵f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)
∴ω+φ=kπ+,k∈Z
又∵g(x)=Acos(ωx+φ)-1
g()=Acos(ω+φ)-1
=Acos(kπ+)-1=-1
故答案為:-1
點評:三角函數(shù)給值求值問題的關鍵就是分析已知角與未知角的關系,然后通過角的關系,選擇恰當?shù)墓,即:如果角與角相等,則使用同角三角函數(shù)關系;如果角與角之間的和或差是直角的整數(shù)倍,則使用誘導公式;如果角與角之間存在和差關系,則我們用和差角公式;如果角與角存在倍數(shù)關系,則使用倍角公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+
π
3
)=f(-t+
π
3
).記g(x)=Acos(ωx+φ)-1,則g(
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+
π
3
)=f(-t+
π
3
).記g(x)=Acos(ωx+φ)-1,則g(
π
3
)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省江門市恩平市附城中學高考二輪復習綜合試卷(文科)(解析版) 題型:解答題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+)=f(-t+).記g(x)=Acos(ωx+φ)-1,則g()=   

查看答案和解析>>

科目:高中數(shù)學 來源:2009年江蘇省無錫市部分學校高三調研數(shù)學試卷(含附加題)(解析版) 題型:解答題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+)=f(-t+).記g(x)=Acos(ωx+φ)-1,則g()=   

查看答案和解析>>

同步練習冊答案