相關(guān)習(xí)題
0 110393 110401 110407 110411 110417 110419 110423 110429 110431 110437 110443 110447 110449 110453 110459 110461 110467 110471 110473 110477 110479 110483 110485 110487 110488 110489 110491 110492 110493 110495 110497 110501 110503 110507 110509 110513 110519 110521 110527 110531 110533 110537 110543 110549 110551 110557 110561 110563 110569 110573 110579 110587 266669
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對(duì)數(shù)的底).
(Ⅰ)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說明理由.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=x
2+4ax+1,g(x)=6a
2lnx+2b+1,其中a>0.
(Ⅰ)設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同,用a表示b,并求b的最大值;
(Ⅱ)設(shè)h(x)=f(x)+g(x),證明:若
,則對(duì)任意x
1,x
2∈(0,+∞),x
1≠x
2有
.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知對(duì)任意的x>0恒有a1nx≤b(x-1)成立.
(1)求正數(shù)a與b的關(guān)系;
(2)若a=1,設(shè)f(x)=m
+n,(m,n∈R),若1nx≤f(x)≤b(x-1)對(duì)?x>0恒成立,求函數(shù)f(x)的解析式;
(3)證明:1n(n!)>2n-4
(n∈N,n≥2)
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知函數(shù)f(x)=ln
2(1+x)+2ln(1+x)-2x.
(I)證明函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞減;
(II)若不等式
≤e
2對(duì)任意的n∈N
*都成立,(其中e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知函數(shù)f(x)=
x
2+2ax,g(x)=3a
2lnx+b.其中a,b∈R.
(1)設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同,若a>0,試建立b關(guān)于a的函數(shù)關(guān)系式;
(2)在(1)的條件下求b的最大值;
(3)若b=0時(shí),函數(shù)h(x)=f(x)+g(x)-(2a+6)x在(0,4)上為單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知函數(shù)f(x)=-x
2+ax-lnx(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)在
上的最大值和最小值;
(2)當(dāng)函數(shù)f(x)在
單調(diào)時(shí),求a的取值范圍;
(3)求函數(shù)f(x)既有極大值又有極小值的充要條件.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
設(shè)函數(shù)f(x)=ax+lnx,g(x)=a2x2;
(1)當(dāng)a=-1時(shí),求函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y+3=0距離的最小值;
(2)是否存在正實(shí)數(shù)a,使得不等式f(x)≤g(x)對(duì)一切正實(shí)數(shù)x都成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知a∈R,函數(shù)f(x)=x2-2alnx(其中x≥1),當(dāng)a≤1時(shí),求f(x)的單調(diào)區(qū)間和最值.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知函數(shù)f(x)滿足2f(x+2)-f(x)=0,當(dāng)x∈(0,2)時(shí),f(x)=lnx+ax
,當(dāng)x∈(-4,-2)時(shí),f(x)的最大值為-4.
(I)求實(shí)數(shù)a的值;
(II)設(shè)b≠0,函數(shù)
,x∈(1,2).若對(duì)任意的x
1∈(1,2),總存在x
2∈(1,2),使f(x
1)-g(x
2)=0,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:
來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版)
題型:解答題
已知函數(shù)f(x)=-a2x2+ax+lnx(a∈R).
(Ⅰ)我們稱使f(x)=0成立的x為函數(shù)的零點(diǎn).證明:當(dāng)a=1時(shí),函數(shù)f(x)只有一個(gè)零點(diǎn);
(Ⅱ)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>