相關(guān)習(xí)題
 0  115554  115562  115568  115572  115578  115580  115584  115590  115592  115598  115604  115608  115610  115614  115620  115622  115628  115632  115634  115638  115640  115644  115646  115648  115649  115650  115652  115653  115654  115656  115658  115662  115664  115668  115670  115674  115680  115682  115688  115692  115694  115698  115704  115710  115712  115718  115722  115724  115730  115734  115740  115748  266669 

科目: 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)。

(1)求函數(shù)的最小正周期和最大值;

(2)求函數(shù)的增區(qū)間;

(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過怎樣的變換得到?

【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運(yùn)用。第一問中,利用可知函數(shù)的周期為,最大值為。

第二問中,函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。故當(dāng),解得x的范圍即為所求的區(qū)間。

第三問中,利用圖像將的圖象先向右平移個單位長度,再把橫坐標(biāo)縮短為原來的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變),再向上平移1個單位即可。

解:(1)函數(shù)的最小正周期為,最大值為。

(2)函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。

 

所求的增區(qū)間為

所求的減區(qū)間為。

(3)將的圖象先向右平移個單位長度,再把橫坐標(biāo)縮短為原來的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變),再向上平移1個單位即可。

 

查看答案和解析>>

科目: 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)和單位圓上半部分上的動點(diǎn)B.

(1)若,求向量;

(2)求的最大值.

【解析】對于這樣的向量的坐標(biāo)和模最值的求解,利用建立直角坐標(biāo)系的方法可知。

第一問中,依題意,,,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911085823385992/SYS201207091109409213861961_ST.files/image002.png">,所以,即,

解得,所以

第二問中,結(jié)合三角函數(shù)的性質(zhì)得到最值。

(1)依題意,,(不含1個或2個端點(diǎn)也對)

, (寫出1個即可)

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911085823385992/SYS201207091109409213861961_ST.files/image002.png">,所以,即,

解得,所以.-

(2),

 當(dāng)時,取得最大值,

 

查看答案和解析>>

科目: 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.

(1)求證:;

(2)若四邊形ABCD是正方形,求證;

(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。

【解析】第一問中,利用由圓柱的性質(zhì)知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛

第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

第三問中,設(shè)正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF     AD∥EF 

(2) 四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

(3)設(shè)正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

 

查看答案和解析>>

科目: 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為的半圓形空地,外的地方種草,的內(nèi)接正方形為一水池,其余地方種花.若 ,設(shè)的面積為,正方形的面積為,將比值稱為“規(guī)劃合理度”.

(1)試用,表示.

(2)當(dāng)為定值,變化時,求“規(guī)劃合理度”取得最小值時的角的大小.

【解析】第一問中利用在ABC中  ,

設(shè)正方形的邊長為  則  然后解得

第二問中,利用  而

借助于 為減函數(shù) 得到結(jié)論。 

(1)、 如圖,在ABC中  ,

 

設(shè)正方形的邊長為  則 

      = 

(2)、  而  ∵0 <  < ,又0 <2 <,0<t£1 為減函數(shù)   

當(dāng)時 取得最小值為此時 

 

查看答案和解析>>

科目: 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,是△的重心,、分別是邊、上的動點(diǎn),且、三點(diǎn)共線.

(1)設(shè),將表示;

(2)設(shè),,證明:是定值;

(3)記△與△的面積分別為、.求的取值范圍.

(提示:

【解析】第一問中利用(1)

第二問中,由(1),得;①

另一方面,∵是△的重心,

不共線,∴由①、②,得

第三問中,

由點(diǎn)、的定義知,

時,;時,.此時,均有

  時,.此時,均有

以下證明:,結(jié)合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

、不共線,∴由①、②,得 

解之,得,∴(定值).

(3)

由點(diǎn)、的定義知,

時,;時,.此時,均有

  時,.此時,均有

以下證明:.(法一)由(2)知,

,∴

,∴

的取值范圍

 

查看答案和解析>>

科目: 來源:2013屆山東省濟(jì)寧市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是虛數(shù)單位,復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)為(    )

A.2     B.-2     C.     D.

 

查看答案和解析>>

科目: 來源:2013屆山東省濟(jì)寧市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說法中,錯誤的是(    )

A.命題“若,則”的逆否命題為“若,則

B.“”是“”的充分不必要條件

C.對于命題,則

D.若p且q為假命題,則p、q均為假命題

 

查看答案和解析>>

科目: 來源:2013屆山東省濟(jì)寧市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

對于……大前提

……小前提

所以……結(jié)論

以上推理過程中的錯誤為(    )

A.大前提             B.小前提         C.結(jié)論           D.無錯誤

 

查看答案和解析>>

科目: 來源:2013屆山東省濟(jì)寧市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

復(fù)數(shù)的積是純虛數(shù)的充要條件是(    )

   A.                      B.   

   C.           D.

 

查看答案和解析>>

科目: 來源:2013屆山東省濟(jì)寧市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的圖象如圖,且,則有(    )

   A.           B.

C.            D.

 

查看答案和解析>>

同步練習(xí)冊答案