科目: 來源: 題型:解答題
(本小題12分)已知橢圓的離心率為,為橢圓的右焦點,兩點在橢圓上,且,定點。
(1)若時,有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當(dāng)動直線斜率為k,且設(shè)時,試求關(guān)于S的函數(shù)表達(dá)式f(s)的最大值,以及此時兩點所在的直線方程。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分13分)
已知點,,△的周長為6.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)過點的直線與曲線相交于不同的兩點,.若點在軸上,且,求點的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
拋物線頂點在坐標(biāo)原點,焦點與橢圓的右焦點重合,過點斜率為的直線與拋物線交于,兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標(biāo)原點)
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當(dāng)時,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
如圖橢圓:的兩個焦點為、和頂點、構(gòu)成面積為32的正方形.
(1)求此時橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點、、為的中點,且. 問:、兩點能否關(guān)于直線對稱. 若能,求出的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
設(shè)雙曲線的方程為,、為其左、右兩個頂點,是雙曲線 上的任意一點,作,,垂足分別為、,與交于點.
(1)求點的軌跡方程;
(2)設(shè)、的離心率分別為、,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分15分)
在平面內(nèi),已知橢圓的兩個焦點為,橢圓的離心率為 ,點是橢圓上任意一點, 且,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點為直角頂點作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
如圖,拋物線的頂點為坐標(biāo)原點,焦點在軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線上,且,求點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分13分)
已知點為拋物線: 的焦點,為拋物線上的點,且.
(Ⅰ)求拋物線的方程和點的坐標(biāo);
(Ⅱ)過點引出斜率分別為的兩直線,與拋物線的另一交點為,與拋物線的另一交點為,記直線的斜率為.
(。┤,試求的值;
(ⅱ)證明:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com