相關(guān)習(xí)題
 0  16491  16499  16505  16509  16515  16517  16521  16527  16529  16535  16541  16545  16547  16551  16557  16559  16565  16569  16571  16575  16577  16581  16583  16585  16586  16587  16589  16590  16591  16593  16595  16599  16601  16605  16607  16611  16617  16619  16625  16629  16631  16635  16641  16647  16649  16655  16659  16661  16667  16671  16677  16685  266669 

科目: 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3+ax2-9x的導(dǎo)函數(shù)為f′(x),且f′(2)=15.
(Ⅰ)求函數(shù)f(x)的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

f(x)=ax+
a
x
-3lnx
在區(qū)間[1,2]上為單調(diào)函數(shù),則a的取值范圍是______.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=alnx-x,其中a∈R,且a≠0.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[1,e]上的最小值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知向量
a
=(ex+
x2
2
,-x),
b
=(1,t),若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上存在增區(qū)間,則t 的取值范圍為______.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

12分)設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,a∈R,
(1)若f(x)在x=3處取得極值,求實(shí)數(shù)a的值;
(2)在(1)的條件下,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=xlnx(x>0),g(x)=-x+2,
(I)求函數(shù)f(x)在點(diǎn)M(e,f(e))處的切線方程;
(II)設(shè)F(x)=ax2-(a+2)x+f′(x)(a>0),討論函數(shù)F(x)的單調(diào)性;
(III)設(shè)函數(shù)H(x)=f(x)+g(x),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=H(x)(x∈[
1
e
,e])
都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)=
ax+b
x2+1
(其中常數(shù)a,b∈R),g(x)=sinx-
2
π
x

(Ⅰ)當(dāng)a=1時(shí),若函數(shù)f(x)是奇函數(shù),求f(x)的極值點(diǎn);
(Ⅱ)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)b=0,a∈(
π
2
,π]
時(shí),求函數(shù)g(x)在[0,a]上的最小值h(a),并探索:是否存在滿足條件的實(shí)數(shù)a,使得對(duì)任意的x∈R,f(x)>h(a)恒成立.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)=
-x3+x2+bx+c,x<1
alnx,x≥1
,當(dāng)x=
2
3
時(shí),函數(shù)f(x)有極大值
4
27

(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)若存在x0∈[-1,2],使得f(x0)≥3a-7成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知可導(dǎo)函數(shù)f(x)(x∈R)滿足f′(x)>f(x),則當(dāng)a>0時(shí),f(a)和eaf(0)大小關(guān)系為( 。
A.f(a)<eaf(0)B.f(a)>eaf(0)C.f(a)=eaf(0)D.f(a)≤eaf(0)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然常數(shù),a∈R.
(1)討論a=1時(shí),函數(shù)f(x)的單調(diào)性和極值;
(2)求證:在(1)的條件下,f(x)>g(x)+
1
2
;
(3)是否存在實(shí)數(shù)a使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案