相關(guān)習(xí)題
 0  166584  166592  166598  166602  166608  166610  166614  166620  166622  166628  166634  166638  166640  166644  166650  166652  166658  166662  166664  166668  166670  166674  166676  166678  166679  166680  166682  166683  166684  166686  166688  166692  166694  166698  166700  166704  166710  166712  166718  166722  166724  166728  166734  166740  166742  166748  166752  166754  166760  166764  166770  166778  266669 

科目: 來源:不詳 題型:解答題

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,點(diǎn)M在線段EC上(除端點(diǎn)外)

(1)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:平面
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時(shí),求三棱錐的體積

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,四棱錐PABCD的底面ABCD為一直角梯形,其中BAADCDAD,CDAD=2ABPA⊥底面ABCD,EPC的中點(diǎn).
 
(1)求證:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD與平面BDC夾角的余弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

)如圖所示,在三棱錐PABC中,ABBC,平面PAC⊥平面ABC,PDAC于點(diǎn)DAD=1,CD=3,PD.
 
(1)證明:△PBC為直角三角形;
(2)求直線AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFG,BAAC,EDDG,EFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求證:BE⊥平面DEFG
(2)求證:BF∥平面ACGD;
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在三棱柱ABC­A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖(1),四邊形ABCD中,E是BC的中點(diǎn),DB=2,DC=1,BC=,AB=AD=.將圖(1)沿直線BD折起,使得二面角A­BD­C為60°,如圖(2).

(1)求證:AE⊥平面BDC;
(2)求直線AC與平面ABD所成角的余弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=3,AD=6,BD是對(duì)角線,過點(diǎn)A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點(diǎn)D到點(diǎn)P的位置,且PB=.

(1)求證:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).

(1)求直線PB與平面POC所成角的余弦值;
(2)求B點(diǎn)到平面PCD的距離;
(3)線段PD上是否存在一點(diǎn)Q,使得二面角Q­AC­D的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案