相關(guān)習(xí)題
 0  169096  169104  169110  169114  169120  169122  169126  169132  169134  169140  169146  169150  169152  169156  169162  169164  169170  169174  169176  169180  169182  169186  169188  169190  169191  169192  169194  169195  169196  169198  169200  169204  169206  169210  169212  169216  169222  169224  169230  169234  169236  169240  169246  169252  169254  169260  169264  169266  169272  169276  169282  169290  266669 

科目: 來源:不詳 題型:解答題

已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C:的兩個焦點是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點,求的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點A,B,點Q滿足   ,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓經(jīng)過點,離心率為
(1)求橢圓C的方程:
(2)過點Q(1,0)的直線l與橢圓C相交于A、B兩點,點P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時,求直線l的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足,若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知圓過定點,圓心在拋物線上,為圓軸的交點.
(1)當(dāng)圓心是拋物線的頂點時,求拋物線準(zhǔn)線被該圓截得的弦長.
(2)當(dāng)圓心在拋物線上運動時,是否為一定值?請證明你的結(jié)論.
(3)當(dāng)圓心在拋物線上運動時,記,,求的最大值,并求出此時圓的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于兩點,分別交拋物線為E、F兩點,圓心點到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時,求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓)的右焦點為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點,分別為線段的中點. 若坐標(biāo)原點在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線于M、N兩點,且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案