相關(guān)習(xí)題
 0  169414  169422  169428  169432  169438  169440  169444  169450  169452  169458  169464  169468  169470  169474  169480  169482  169488  169492  169494  169498  169500  169504  169506  169508  169509  169510  169512  169513  169514  169516  169518  169522  169524  169528  169530  169534  169540  169542  169548  169552  169554  169558  169564  169570  169572  169578  169582  169584  169590  169594  169600  169608  266669 

科目: 來源:不詳 題型:單選題

已知直線y=2x+b與曲線xy=2相交于A,B兩點,若|AB|=5,則實數(shù)b的值是(  )
A.2B.-2C.±2D.4

查看答案和解析>>

科目: 來源:不詳 題型:單選題

如圖,正方體ABCD-A1B1C1D1的棱長為1,點M 在棱AB上,且AM=
1
3
,點P是平面ABCD上的動點,且動點P到直線A1D1的距離與點P到點M 的距離的平方差為2,則動點P的軌跡是( 。
A.圓B.拋物線C.雙曲線D.直線

查看答案和解析>>

科目: 來源:不詳 題型:解答題

橢圓C的中心在原點O,焦點在x軸,它的短軸長為2,過焦點與x軸垂直的直線與橢圓C相交于A,B兩點且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點N(1,0)的直線l交橢圓C于C、D兩點,交y軸于點P,若
PC
1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C的兩焦點分別為F1(-2
2
,0)、F2(2
2
,0),長軸長為6,
(1)求橢圓C的標準方程;
(2)已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

在同一坐標系中,方程
x2
a2
+
y2
b2
=1
與bx2=-ay(a>b>0)表示的曲線大致是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線W的頂點在原點,其焦點F在x軸的正半軸上,過點F作x軸的垂線與W交于A、B兩點,且點A在第一象限,|AB|=8,過點B作直線BC與x軸交于點T(t,0)(t>2),與拋物線交于點C.
(1)求拋物線W的標準方程;
(2)若t=6,曲線G:x2+y2-2ax-4y+a2=0與直線BC有公共點,求實數(shù)a的取值范圍;
(3)若|OB|2+|OC|2≤|BC|2,求△ABC的面積的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C:
x2
4
+
y2
3
=1
,直線l過點M(m,0).
(Ⅰ)若直線l交y軸于點N,當m=-1時,MN中點恰在橢圓C上,求直線l的方程;
(Ⅱ)如圖,若直線l交橢圓C于A,B兩點,當m=-4時,在x軸上是否存在點p,使得△PAB為等邊三角形?若存在,求出點p坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

過x軸上動點A(a,0)引拋物線y=x2+1的兩條切線AP、AQ,P、Q為切點.
(1)若切線AP,AQ的斜率分別為k1和k2,求證:k1•k2為定值,并求出定值;
(2)求證:直線PQ恒過定點,并求出定點坐標;
(3)當
S△APO
PQ
最小時,求
AQ
AP
的值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,一曲線E過點C,且曲線E上任一點到A,B兩點的距離之和不變.
(1)建立適當?shù)淖鴺讼,求曲線E的方程;
(2)設(shè)點Q是曲線E上的一動點,求線段QA中點的軌跡方程;
(3)設(shè)M,N是曲線E上不同的兩點,直線CM和CN的傾斜角互補,試判斷直線MN的斜率是否為定值.如果是,求這個定值;如果不是,請說明理由.
(4)若點D是曲線E上的任一定點(除曲線E與直線AB的交點),M,N是曲線E上不同的兩點,直線DM和DN的傾斜角互補,直線MN的斜率是否為定值呢?如果是,請你指出這個定值.(本小題不必寫出解答過程)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2,以F1,F(xiàn)2為焦點,離心率為
1
2
的橢圓C2與拋物線C1的一個交點為P.
(1)若橢圓的長半軸長為2,求拋物線方程;
(2)在(1)的條件下,直線l經(jīng)過橢圓C2的右焦點F2,與拋物線C1交于A1,A2兩點,如果|A1A2|等于△PF1F2的周長,求l的斜率;
(3)是否存在實數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案