相關(guān)習(xí)題
 0  169442  169450  169456  169460  169466  169468  169472  169478  169480  169486  169492  169496  169498  169502  169508  169510  169516  169520  169522  169526  169528  169532  169534  169536  169537  169538  169540  169541  169542  169544  169546  169550  169552  169556  169558  169562  169568  169570  169576  169580  169582  169586  169592  169598  169600  169606  169610  169612  169618  169622  169628  169636  266669 

科目: 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(diǎn)P到左右兩焦點(diǎn)F1,F(xiàn)2的距離之和為2
2
,離心率為
2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點(diǎn)F2的直線l交橢圓于A、B兩點(diǎn),若y軸上一點(diǎn)M(0,
3
7
)
滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)M(3
2
,
2
),橢圓的離心率e=
2
2
3

(1)求橢圓C的方程;
(2)過點(diǎn)M作兩直線與橢圓C分別交于相異兩點(diǎn)A、B.若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求
TM
TN
的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR|•|OS|為定值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

對于直線L:y=kx+1是否存在這樣的實(shí)數(shù),使得L與雙曲線C:3x2-y2=1的交點(diǎn)A,B關(guān)于直線y=ax(a為常數(shù))對稱?若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線AP與BP的斜率之積為-
1
2
,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>
3

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,與雙曲線x2-y2=1的漸近線有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為( 。
A.
x2
8
+
y2
2
=1
B.
x2
12
+
y2
6
=1
C.
x2
16
+
y2
4
=1
D.
x2
20
+
y2
5
=1

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

P(x0,y0)(x0≠±a)是雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
上一點(diǎn),M,N分別是雙曲線E的左右頂點(diǎn),直線PM,PN的斜率之積為
1
5

(1)求雙曲線的離心率;
(2)過雙曲線E的右焦點(diǎn)且斜率為1的直線交雙曲線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線上一點(diǎn),滿足
OC
OA
+
OB
,求λ的值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知圓E:(x+
3
2+y2=16,點(diǎn)F(
3
,0),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(Ⅱ)已知A,B,C是軌跡Γ的三個(gè)動(dòng)點(diǎn),A與B關(guān)于原點(diǎn)對稱,且|CA|=|CB|,問△ABC的面積是否存在最小值?若存在,求出此時(shí)點(diǎn)C的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知F1,F(xiàn)2分別為橢圓C1
x2
b2
+
y2
a2
=1(a>b>0)的上下焦點(diǎn),其F1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF2|=
3
5

(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點(diǎn),若橢圓上一點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案