相關(guān)習(xí)題
 0  201863  201871  201877  201881  201887  201889  201893  201899  201901  201907  201913  201917  201919  201923  201929  201931  201937  201941  201943  201947  201949  201953  201955  201957  201958  201959  201961  201962  201963  201965  201967  201971  201973  201977  201979  201983  201989  201991  201997  202001  202003  202007  202013  202019  202021  202027  202031  202033  202039  202043  202049  202057  266669 

科目: 來(lái)源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,用粗線畫(huà)出了某多面體的三視圖,則該多面體最長(zhǎng)的棱長(zhǎng)為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

下列命題錯(cuò)誤的是( 。
A、命題“若p則q”與命題“若¬q,則¬p”互為逆否命題
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
C、?x>0且x≠1,都有x+
1
x
>2
D、“若am2<bm2,則a<b”的逆命題為真

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)x,y想,滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。
A、
11
3
B、
8
3
C、
25
6
D、4

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镈,如果存在非零常數(shù)T,對(duì)于任意x∈D,都有f(x+T)=T•f(x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f(x)的“似周期”.現(xiàn)有下面四個(gè)關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為-1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2-x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號(hào)是
 
.(寫(xiě)出所有滿足條件的命題序號(hào))

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)不等式組
2x-y-2≤0
x+y-1≥0
x-y+1≥0
表示的平面區(qū)域?yàn)镈.則區(qū)域D上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值是( 。
A、1
B、
2
2
C、
1
2
D、5

查看答案和解析>>

科目: 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y-1≥0
x≤3
則z=3x-y的最大值為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

不等式log4(8x-2x)≤x的解集為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)將y表示為x的函數(shù)f(x),并求f(x)的對(duì)稱軸的方程;
(2)若函數(shù)y=f(x)的圖象在y軸的右側(cè)的最高點(diǎn)的橫坐標(biāo)組成一個(gè)數(shù)列{an},求a1+a2+…+a2016的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

在△PQR中,若
PQ
PR
=7,|
PQ
-
PR
|=6,則△PQR面積的最大值為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖所示,在xOy平面上,點(diǎn)A(1,0),點(diǎn)B在單位圓上.∠AOB=θ(0<θ<π)
(1)若點(diǎn)B(-
3
5
,
4
5
),求tan(2θ+
π
4
)的值;
(2)若
OA
+
OB
=
OC
,四邊形OACB的面積用S表示,求S+
OA
OC
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案