相關(guān)習(xí)題
 0  207894  207902  207908  207912  207918  207920  207924  207930  207932  207938  207944  207948  207950  207954  207960  207962  207968  207972  207974  207978  207980  207984  207986  207988  207989  207990  207992  207993  207994  207996  207998  208002  208004  208008  208010  208014  208020  208022  208028  208032  208034  208038  208044  208050  208052  208058  208062  208064  208070  208074  208080  208088  266669 

科目: 來源: 題型:

如圖是一個獎杯的三視圖,試根據(jù)獎杯的三視圖計算它的表面積和體積.(尺寸如圖,單位:cm)

查看答案和解析>>

科目: 來源: 題型:

已知集合M={x|1≤x≤3},集合N={x|-2≤x≤2},集合A滿足A⊆M且A⊆N,若A中元素為整數(shù),求集合A.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x0∈[
1
e
,e](e是自然對數(shù)的底數(shù),e=2.71828…),使不等式2f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,F(xiàn)1,F(xiàn)2是其左、右焦點(diǎn),過F2的直線l交橢圓E于A,B兩點(diǎn),且△AF1F2的周長是6
2

①求橢圓E的方程;
②設(shè)N點(diǎn)的坐標(biāo)是(4
2
,0),若
NA
NB
=18,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

已知tanα=2,求下列各式的值.
(1)
2sinα-3cosα
4sinα-9cosα
;
(2)
2sin2α-3cos2α
4sin2α-9cos2α
;
(3)sin2α-3sinαcosα+1.

查看答案和解析>>

科目: 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,(a≠0),且不等式f(x)<2x的解集為(-1,2).
(1)方程f(x)+3a=0有兩個相等的實(shí)根,求f(x)的解析式.
(2)f(x)的最小值不大于-3a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,在某次考試成績統(tǒng)計中,某老師為了對學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進(jìn)行分析,隨機(jī)挑選了8位同學(xué),得到他們的兩科成績偏差數(shù)據(jù)如下:
學(xué)生序號12345678
數(shù)學(xué)偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)若x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(2)若該次考試該班數(shù)學(xué)平均分為120分,物理平均分為91.5分,試由(1)的結(jié)論預(yù)測數(shù)學(xué)成績?yōu)?28分的同學(xué)的物理成績.
參考數(shù)據(jù):
8
i=1
xiyi
=20×6.5+15×3.5+13×3.5+3×1.5+2×0.5+(-5)×(-0.5)+(-10)×(-2.5)+(-18)×(-3.5)=324
8
i=1
x
 
2
i
=202+152+132+32+22+(-5)2+(-10)2+(-18)2=1256.

查看答案和解析>>

科目: 來源: 題型:

如圖,⊙O的半徑為2,AB是直徑,CD是弦,直線CD交AB延長線于點(diǎn)P,
AE
=
AC
,ED交AB于點(diǎn)F.
(1)求證:PF•PO=PB•PA;
(2)若PB=2BF,試求PB的長.

查看答案和解析>>

科目: 來源: 題型:

如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹的棵數(shù);乙組有一個數(shù)據(jù)模糊,用X表示.
(Ⅰ)若x=8,求乙組同學(xué)植樹的棵數(shù)的平均數(shù);
(Ⅱ)若x=9,分別從甲、乙兩組中各隨機(jī)錄取一名學(xué)生,求這兩名學(xué)生植樹總棵數(shù)為19的概率;
(Ⅲ)甲組中有兩名同學(xué)約定一同去植樹,且在車站彼此等候10分鐘,超過10分鐘,則各自到植樹地點(diǎn)再會面.一個同學(xué)在7點(diǎn)到8點(diǎn)之間到達(dá)車站,另一個同學(xué)在7點(diǎn)半與8點(diǎn)之間到達(dá)車站,求他們在車站會面的概率.

查看答案和解析>>

科目: 來源: 題型:

已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為
x=tcosθ
y=tsinθ
(t為參數(shù),θ為直線l的傾斜角),圓C的極坐標(biāo)方程為ρ2-8ρcosθ+12=0.
(Ⅰ)寫出直線l普通方程與圓C的直角坐標(biāo)方程;
(Ⅱ)若直線l與圓C相切,求θ的值.

查看答案和解析>>

同步練習(xí)冊答案