相關(guān)習(xí)題
 0  208049  208057  208063  208067  208073  208075  208079  208085  208087  208093  208099  208103  208105  208109  208115  208117  208123  208127  208129  208133  208135  208139  208141  208143  208144  208145  208147  208148  208149  208151  208153  208157  208159  208163  208165  208169  208175  208177  208183  208187  208189  208193  208199  208205  208207  208213  208217  208219  208225  208229  208235  208243  266669 

科目: 來源: 題型:

已知向量
m
=(
3
cos
x
2
,0),
n
=(sin
x
2
,cos2
x
2
),f(x)=
m
•(
m
+
n
).
(Ⅰ) 求f(x)的單調(diào)區(qū)間;
(Ⅱ)在銳角△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3+
1
2
(a-1)x2+ax,x∈R.
(Ⅰ)若a=2,求f(x)的單調(diào)區(qū)間.
(Ⅱ)若-1<a<-1時,f(x)在區(qū)間[-1,2}上的最小值為-
10
3
,求f(x)在該區(qū)間上的最大值.

查看答案和解析>>

科目: 來源: 題型:

(1)已知sinα+cosα=
4
5
,0<α<π,求sinα-cosα;
(2)已知tanα=2,求
2sinα-cosα
sinα+3cosα

查看答案和解析>>

科目: 來源: 題型:

設(shè)f(x)=
1
3x+
3

(1)求f(0)+f(1),f(-1)+f(2),f(-2)+f(3);
(2)由(1)歸納出一般結(jié)論,并給出證明.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax3+2x2+b(x∈R),其中a,b∈R,g(x)=x4+f(x).
(1)當(dāng)a=-
10
3
時,討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)g(x)僅在x=0處有極值,求a的取值范圍;
(3)若對于任意的a∈[-2,2],不等式g(x)≤1在[-1,1]上恒成立,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2an-2n+1+2(n為正整數(shù)).
(1)記cn=
an
2n
,證明數(shù)列{cn}為等差數(shù)列;  
(2)求數(shù)列{an}的通項公式;
(3)令bn=log2a1+log2
a2
2
+…+log2
an
n
,求數(shù)列{
1
bn
}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(ax),(a>0),g(x)=
x-1
x

(1)若?x∈[1,+∞),f(x)≥g(x),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,a取最小值時,記h(x)=f(x)-g(x),過點(diǎn)(1,-1)是否存在函數(shù)h(x)的切線?若存在,有多少條?若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)y=Asin(wx+ϕ)(A>0,W>0,|ϕ|≤
π
2
)的圖象過點(diǎn)P(
π
12
,0),圖象上與點(diǎn)P最近的一個最高點(diǎn)是Q(
π
3
,5).
(1)求f(x)的解析式.
(2)在[
8
3
π,3π]上是否存在f(x)的對稱軸,如果存在,求出其對稱軸方程,如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,右焦點(diǎn)為(
2
,0).
(1)求橢圓C的方程;
(2)過原點(diǎn)O作兩條互相垂直的射線,與橢圓交于A,B兩點(diǎn),求證:點(diǎn)O到直線AB的距離為定值;
(3)在(2)的條件下,求△OAB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

7名學(xué)生站成一排,下列情況各有多少種不同的排法.
(1)甲、乙必須排在一起;
(2)甲、乙、丙互不相鄰;
(3)甲、乙相鄰,但不和丙相鄰.

查看答案和解析>>

同步練習(xí)冊答案