相關(guān)習(xí)題
 0  210970  210978  210984  210988  210994  210996  211000  211006  211008  211014  211020  211024  211026  211030  211036  211038  211044  211048  211050  211054  211056  211060  211062  211064  211065  211066  211068  211069  211070  211072  211074  211078  211080  211084  211086  211090  211096  211098  211104  211108  211110  211114  211120  211126  211128  211134  211138  211140  211146  211150  211156  211164  266669 

科目: 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且當(dāng)x>0時(shí),滿足
f(x)
x
>f′(x).
(Ⅰ)判斷函數(shù)y=
f(x)
x
在(0,+∞)上的單調(diào)性,并說明理由;
(Ⅱ)三個(gè)同學(xué)對問題“已知m、n∈N*且n>m≥2,證明(1+m)n>(1+n)m”提出各自的解題思路.
甲說:“用二項(xiàng)式定理將不等式的左右兩邊展開,運(yùn)用放縮法即可證明”
乙說:“通過轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性即可證明”
參考上述解題思路,結(jié)合自己的知識,請你證明此不等式.

查看答案和解析>>

科目: 來源: 題型:

青年歌手電視大賽共有10名選手參加,并請了7名評委,如圖所示的莖葉圖(圖1)是7名評委給參加最后決賽的兩位選手甲、乙評定的成績,流程圖用來編寫程序統(tǒng)計(jì)每位選手的成績(各評委所給有效分?jǐn)?shù)的平均值),試根據(jù)所給條件回答下列問題:

(1)根據(jù)莖葉圖,選手乙的成績中,眾數(shù)是多少?選手甲的成績中,中位數(shù)是多少?
(2)在流程圖(如圖2所示)中,用k表示評委人數(shù),用a表示選手的成績(各評委所給有效分?jǐn)?shù)的平均值).橫線①、②處應(yīng)填什么?
(3)根據(jù)流程圖,甲、乙的成績分別是多少?

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{
2n
an+1
}的前n項(xiàng)和,求Sn
(3)證明:
1
a1
+
1
a2
+
1
a3
+…+
1
an+1
5
3
(n∈N*).

查看答案和解析>>

科目: 來源: 題型:

解不等式:3x2-x-4>0.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=
3
5
,2an+1an+an+1=3an,n∈N.
(1)求證:數(shù)列{
1
an
-1}為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)m,s,t,使m,s,t成等差數(shù)列,且am-1,as-1,at-1成等比數(shù)列?如果存在,求出所有符合條件的m,s,t,如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知中心在原點(diǎn)的橢圓
x2
a2
+
y2
b2
=1
,點(diǎn)(2,1)在橢圓上,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知二次函數(shù)y=f(x)=x2+bx+c的圖象過點(diǎn)(1,13),圖象關(guān)于直線x=-
1
2
對稱.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,
①若函數(shù)y=g(x)-m的零點(diǎn)有三個(gè),求實(shí)數(shù)m的取值范圍;
②求函數(shù)g(x)在[t,2]上的最小值.

查看答案和解析>>

科目: 來源: 題型:

執(zhí)行如圖程序框圖:
(1)如果在判斷框內(nèi)填入“a≤0.05”,請寫出輸出的所有數(shù)值;
(2)如果在判斷框內(nèi)填入“n≥100”,試求出所有輸出數(shù)字的和.

查看答案和解析>>

科目: 來源: 題型:

已知:f(x)=ax2+(b-8)x-a-ab,當(dāng)x∈(-3,2)時(shí),f(x)>0,x∈(-∞,-3)∪(2,+∞)時(shí),
f(x)<0.
(1)求y=f(x)的解析式
(2)解x的不等式ax2+bx+c≤0.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}、{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,n∈N*
(1)證明數(shù)列{
1
bn
}
為等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明:對任意的n∈N*,有1+
n
2
S2n
1
2
+n成立.

查看答案和解析>>

同步練習(xí)冊答案