相關(guān)習(xí)題
 0  211127  211135  211141  211145  211151  211153  211157  211163  211165  211171  211177  211181  211183  211187  211193  211195  211201  211205  211207  211211  211213  211217  211219  211221  211222  211223  211225  211226  211227  211229  211231  211235  211237  211241  211243  211247  211253  211255  211261  211265  211267  211271  211277  211283  211285  211291  211295  211297  211303  211307  211313  211321  266669 

科目: 來源: 題型:

如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

科目: 來源: 題型:

等差數(shù)列{an}中,d<0,若|a3|=|a9|,的前n項(xiàng)和取最大值時(shí),n的值為
 

查看答案和解析>>

科目: 來源: 題型:

一袋中裝有4個(gè)形狀、大小完全相同的球,其中黑球2個(gè),白球2個(gè),假設(shè)每個(gè)小球從袋中被取出的可能性相同,首先由甲取出2個(gè)球,并不再將它們放回原袋中,然后由乙取出剩下的2個(gè)球,規(guī)定取出一個(gè)黑球記1分,取出一個(gè)白球記2分,取出球的總積分多者獲勝.
(1)求甲、乙平局的概率;
(2)假設(shè)可以選擇取球的先后順序,你選擇先取,還是后取,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓M的對(duì)稱軸為坐標(biāo)軸,且圓x2+y2+2
2
y=0的圓心為橢圓M的一個(gè)焦點(diǎn),又點(diǎn)A(1,
2
)在橢圓M上.
(1)求橢圓M的方程;
(2)已知直線l的斜率為
2
,若直線l與橢圓M交于B、C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)P(x0,y0)為橢圓
x2
4
+y=1內(nèi)一定點(diǎn)(不在坐標(biāo)軸上),過點(diǎn)P的兩直線分別與橢圓交于A,C和B,D,若AB∥CD.
(Ⅰ)證明:直線AB的斜率為定值;
(Ⅱ)過點(diǎn)P作AB的平行線,與橢圓交于E,F(xiàn)兩點(diǎn),證明:點(diǎn)P平分線段EF.

查看答案和解析>>

科目: 來源: 題型:

隨著我國新型城鎮(zhèn)化建設(shè)的推進(jìn),城市人口有了很大發(fā)展,生活垃圾也急劇遞增.據(jù)統(tǒng)計(jì)資料顯示,到2013年末,某城市堆積的垃圾已達(dá)到50萬噸,為減少垃圾對(duì)環(huán)境污染,實(shí)現(xiàn)無害化、減量化和再生資源化,該市對(duì)垃圾進(jìn)行資源化和回收處理.
(1)假設(shè)2003年底該市堆積的垃圾為10萬噸,從2003年底到2013年底這十年中,該市每年產(chǎn)生的新垃圾以10%的年平均增長率增長,試求2013年,該市產(chǎn)生的新垃圾約有多少噸?
(2)根據(jù)預(yù)測,從2014年起該市還將以每年3萬噸的速度產(chǎn)生新的垃圾,同時(shí)政府規(guī)劃每年處理上年堆積垃圾的20%,現(xiàn)用b1表示2014年底該市堆積的垃圾數(shù)量,b2表示2015年底該市堆積的垃圾數(shù)量,…,bn表示經(jīng)過n年后該城市年底堆積的垃圾數(shù)量.
①求b1的值和bn的表達(dá)式;
②經(jīng)過多少年后,該城市的垃圾數(shù)量可以控制在30萬噸的范圍內(nèi).(結(jié)果精確到0.1,參考數(shù)據(jù):1.111=2.9,1.110=2.6,1.19=2.4,1.18=2.1)

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足bsinA=
3
acosB.
(1)求角B的大;
(2)求y=2sin2A+cos(
3
-2A)取最大值時(shí)角A的大。

查看答案和解析>>

科目: 來源: 題型:

平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓上、下頂點(diǎn)分別為B1,B2.橢圓上關(guān)于原點(diǎn)對(duì)稱兩點(diǎn)M(m,n),N(-m,-n)和橢圓上異于M,N兩點(diǎn)的任一點(diǎn)P滿足直線PM,PN的斜率之積等于-
1
4
(直線PM,PN都不垂直于x軸),焦點(diǎn)F(c,0)在直線x-2y-
3
=0上,直線y=kx+2與橢圓交于不同兩點(diǎn)S,T.
(Ⅰ)求C的方程;
(Ⅱ)求證:直線B1S與直線B2T的交點(diǎn)在一條定直線上,并求出這條定直線.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,面積S=
3
2
abcosC
(1)求角C的大小;
(2)設(shè)函數(shù)f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
,求f(B)的最大值,及取得最大值時(shí)角B的值.

查看答案和解析>>

科目: 來源: 題型:

若實(shí)數(shù)x,y滿足x≥y>0,且x=4
y
+2
x-y
,則x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案