相關(guān)習(xí)題
 0  234118  234126  234132  234136  234142  234144  234148  234154  234156  234162  234168  234172  234174  234178  234184  234186  234192  234196  234198  234202  234204  234208  234210  234212  234213  234214  234216  234217  234218  234220  234222  234226  234228  234232  234234  234238  234244  234246  234252  234256  234258  234262  234268  234274  234276  234282  234286  234288  234294  234298  234304  234312  266669 

科目: 來源: 題型:選擇題

11.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.f(x)=x+2,g(x)=$\frac{{{x^2}-4}}{x-2}$D.f(x)=x,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目: 來源: 題型:選擇題

10.若集合A={x|-1≤x≤1},B={x|0<x<2},則A∩B=( 。
A.{x|-1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}

查看答案和解析>>

科目: 來源: 題型:填空題

9.若直線kx-y+6-3k=0與曲線y=$\sqrt{9-{x^2}}$有兩個(gè)交點(diǎn),則k的范圍為:$(\frac{3}{4},1]$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.在區(qū)間(1,3)中隨機(jī)的取出兩個(gè)數(shù),則兩數(shù)之和大于3的概率是$\frac{7}{8}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.將函數(shù)y=cos x的圖象上所有的點(diǎn)向右平行移動(dòng)$\frac{π}{10}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是( 。
A.y=cos(2x-$\frac{π}{10}$)B.y=cos(2x-$\frac{π}{5}$)C.y=cos($\frac{1}{2}$x-$\frac{π}{10}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{20}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)(x∈R)是以2為最小正周期的周期函數(shù),且x∈[0,2]時(shí),f(x)=(x-1)2,則f($\frac{7}{2}$)=(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.函數(shù)f(x)=tan(ωx-$\frac{π}{4}$)(ω>0)與函數(shù)g(x)=sin($\frac{π}{4}$-2x)的最小正周期相同則ω=( 。
A.±1B.1C.±2D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

4.下列運(yùn)算結(jié)果正確的是(  )
A.a3+a2=a5B.(x+y)2=x2+y2C.x6+x2=x4D.(ab)2=a2b2

查看答案和解析>>

科目: 來源: 題型:解答題

3.定義:若$\frac{f(x)}{{x}^{k}}$在[k,+∞)上為增函數(shù),則稱f(x)為“k次比增函數(shù)”,其中(k∈N*).已知f(x)=eax其中e為自然對(duì)數(shù)的底數(shù).
(1)若f(x)是“1次比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=$\frac{1}{2}$時(shí),求函數(shù)g(x)=$\frac{f(x)}{x}$在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax.若g(x)=$\frac{1}{{e}^{x}}$,對(duì)存在x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{\sqrt{e}}{e}$-$\frac{5}{4}$]B.(-∞,$\frac{\sqrt{e}}{e}$-8]C.(-∞,$\frac{1}{{e}^{2}}$-$\frac{5}{4}$]D.(-∞,$\frac{1}{{e}^{2}}$-8]

查看答案和解析>>

同步練習(xí)冊(cè)答案