相關(guān)習題
 0  234363  234371  234377  234381  234387  234389  234393  234399  234401  234407  234413  234417  234419  234423  234429  234431  234437  234441  234443  234447  234449  234453  234455  234457  234458  234459  234461  234462  234463  234465  234467  234471  234473  234477  234479  234483  234489  234491  234497  234501  234503  234507  234513  234519  234521  234527  234531  234533  234539  234543  234549  234557  266669 

科目: 來源: 題型:填空題

19.不等式mx2-mx+1>0對任意實數(shù)x都成立,則實數(shù)m的取值范圍是0≤m<4.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若Sn=1-2+3-4+…+(-1)n+1•n,則S17+S33+S50等于 ( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=kax(k為常數(shù),a>0且a≠1)的圖象過點A(0,1)和點B(2,16).
(1)求函數(shù)的解析式;
(2)g(x)=b+$\frac{1}{f(x)+1}$是奇函數(shù),求常數(shù)b的值;
(3)對任意的x1,x2∈R且x1≠x2,試比較$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知集合A={x|a≤x≤a+4},B={x|x>1 或x<-6}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.設(shè)全集U={l,3,5,7,9},集合M={1,a-5},M⊆U且∁UM={3,5,7},則實數(shù)a=14.

查看答案和解析>>

科目: 來源: 題型:填空題

14.集合A={x|$\frac{1}{2}$<2x≤4},則 A∩Z={0,1,2}.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{{x^2}+8x+16}$+$\sqrt{{x^2}-10x+25}$.
(1)求不等式f(x)≥f(-4)的解集;
(2)設(shè)函數(shù)g(x)=k(x-5),k∈R,若f(x)>g(x)對任意x∈R都成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=2\sqrt{2}cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)),將曲線C1上每一點的橫坐標縮短為原來的$\frac{1}{2}$倍,縱坐標縮短為原來的$\frac{1}{3}$倍,得到曲線C,直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=2+2\sqrt{3}t\\ y=1+2t\end{array}\right.$(t為參數(shù)),直線l與曲線C交于A,B兩點.
(1)寫出曲線C和直線l在直角坐標系下的普通方程;
(2)若P點的坐標為P(2,1),求|PA|•|PB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點$(\sqrt{2},0)$,且焦距為2.
(1)求橢圓C的方程;
(2)若A為橢圓的下頂點,經(jīng)過點(1,1)的直線與橢圓C交于不同兩點M,N(均異于點A),證明:直線AM與AN的斜率之和為定值,并求出定值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠ABC=60°,O為AC,BD的交點,且PO⊥平面ABCD,PO=$\sqrt{6}$,點M為側(cè)棱PD上一點,且滿足PD⊥平面ACM.
(1)若在棱PD上存在一點N,且BN∥平面AMC,確定點N的位置,并說明理由;
(2)求點B到平面MCD的距離.

查看答案和解析>>

同步練習冊答案