相關習題
 0  234409  234417  234423  234427  234433  234435  234439  234445  234447  234453  234459  234463  234465  234469  234475  234477  234483  234487  234489  234493  234495  234499  234501  234503  234504  234505  234507  234508  234509  234511  234513  234517  234519  234523  234525  234529  234535  234537  234543  234547  234549  234553  234559  234565  234567  234573  234577  234579  234585  234589  234595  234603  266669 

科目: 來源: 題型:選擇題

5.若函數(shù)f(x)是奇函數(shù),且在(0,+∞)上是增函數(shù),又f(-3)=0,則(x-2)f(x)<0的解集是(  )
A.(-3,0)∪(2,3)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(2,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax+b(a>0且a≠1)的定義域和值域都是[-1,0],則a+b=( 。
A.-$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{5}{2}$D.-$\frac{1}{2}$或-$\frac{5}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

3.在三棱錐P-ABC中,PA⊥平面ABC,△ABC為正三角形,D、E分別為BC、CA的中點,F(xiàn)為CD的中點.若在線段PB上存在一點Q,使得平面ADQ∥平面PEF.
(1)求$\frac{PQ}{QB}$的值;
(2)設AB=PA=4,求三棱錐Q-PEF的體積;
(3)在第2問的前提下,若平面QEF與線段PA交于點M,求AM.(注:本小問文科生不做,理科生做)

查看答案和解析>>

科目: 來源: 題型:解答題

2.求下列情況下的概率.
(1)若a、b是一枚骰子擲兩次所得到的點數(shù),求使得方程x2+ax+b2=0有實根的概率;
(2)在區(qū)間[0,1]內(nèi)隨機取兩個數(shù),分別記為a,b,求使得方程x2+ax+b2=0有實根的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖所示是一個長方體截去一個角得到的幾何體的直觀圖及正視圖和側(cè)視圖(單位:cm).
(1)畫出該多面體的俯視圖,并標上相應的數(shù)據(jù);
(2)設M為AB上的一點,N為BB’中點,且AM=4,證明:平面GEF∥平面DMN.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖所示,在空間四邊形ABCD中,E,F(xiàn)分別為AB,AD的中點,G,H分別在BC,CD上,且BG:GC=DH:HC=1:2,求證:
(1)E,F(xiàn),G,H四點共面;
(2)EG與HF的交點在直線AC上.

查看答案和解析>>

科目: 來源: 題型:解答題

19.某服裝商場為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關系,隨機統(tǒng)計了某4個月的月銷售量與當月平均氣溫,其數(shù)據(jù)如表:
月平均氣溫x(°C)171382
月銷售量y(件)24334055
(1)算出線性回歸方程$\widehat{y}$=bx+a; (a,b精確到十分位)
(2)氣象部門預測下個月的平均氣溫約為6℃,據(jù)此估計,求該商場下個月毛衣的銷售量.
參考公式:線性回歸方程為,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{{x}^{2}+sinx}{sinx}$,若f($\frac{π}{8}$)=a,則f(-$\frac{π}{8}$)=(  )
A.1-aB.2-aC.1+aD.2+a

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設E,F(xiàn)分別為平行四邊形ABCD中AB,AD的中點,$\overrightarrow{EC}$+$\overrightarrow{FC}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AC}$C.$\frac{3}{2}$$\overrightarrow{AC}$D.2$\overrightarrow{AC}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.(1)如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,P為線段OC的中點,求$\overrightarrow{AP}$•$\overrightarrow{OP}$的值;
(2)已知2sin2α=1+cos2α,求tan2α的值.

查看答案和解析>>

同步練習冊答案