相關習題
 0  234483  234491  234497  234501  234507  234509  234513  234519  234521  234527  234533  234537  234539  234543  234549  234551  234557  234561  234563  234567  234569  234573  234575  234577  234578  234579  234581  234582  234583  234585  234587  234591  234593  234597  234599  234603  234609  234611  234617  234621  234623  234627  234633  234639  234641  234647  234651  234653  234659  234663  234669  234677  266669 

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+c}}$(a{N*,b∈R,0<c≤1)定義在[-1,1]上的奇函數(shù),f(x)的最大值為$\frac{1}{2}$,且f(1)>$\frac{2}{5}$.
( I)求函數(shù)f(x)的解析式;
( II)判斷函數(shù)f(x)的單調(diào)性;并證明你的結論;
( III)當存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0成立時,請同學們探究實數(shù)m的所有可能取值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知點A(-1,0),B(1,0),直線AM與直線BM相交于點M,直線AM與直線BM的斜率分別記為kAM與kBM,且kAM•kBM=-2
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過定點F(0,1)作直線PQ與曲線C交于P,Q兩點,△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.函數(shù)y=$\frac{1}{\sqrt{4-3x-{x}^{2}}}$+(x+1)0的定義域為( 。
A.[-4,1]B.(-4,1)C.[-4,-1)D.(-4,-1)∪(-1,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知全集U=R,且A={x||x-2|>2},B={x|y=$\frac{1}{\sqrt{-{x}^{2}+2x+3}}$},則(∁UA)∩B等于(  )
A.(-1,3)B.(-1,0)∪(3,4)C.(3,4)D.[0,3)

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=1+$\frac{x-|x|}{4}$.
(1)用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標系中畫出函數(shù)f(x)的圖象;
在同一平面直角坐標系中,再畫出函數(shù)g(x)=$\frac{1}{x}$(x>0)的圖象(不用列表),觀察圖象直接寫出當x>0時,不等式f(x)>g(x)的解集.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c,那么a>b是sinA>sinB的(  )條件.
A.充分不必要B.必要不充分C.充分且必要D.無關

查看答案和解析>>

科目: 來源: 題型:解答題

16.某校為了解2015年高一年級學生課外書籍借閱情況,從中隨機抽取了40名學生課外書籍借閱情況,將統(tǒng)計結果列出如表的表格,并繪制成如圖所示的扇形統(tǒng)計圖,其中科普類冊數(shù)占這40名學生借閱總冊數(shù)的40%.
(1)求表格中字母m的值及扇形統(tǒng)計圖中“教輔類”所對應的圓心角a的度數(shù);
(2)該校2015年高一年級有500名學生,請你估計該年級學生共借閱教輔類書籍約多少本?
類別科普類教輔類文藝類其他
冊數(shù)(本)128m8048

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求證:AC∥DE;
(2)過點B作BF⊥AC于點F,連結EF,試判別四邊形BCEF的形狀,并說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖,在正三棱錐P-ABC中,D,E分別是AB,AC的中點,O為頂點P在底面ABC內(nèi)的投影,有下列三個論斷:①AC⊥PB;②AC∥平面POD;③AB⊥平面POD,其中正確論斷的個數(shù)為(  )
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目: 來源: 題型:填空題

13.正方體的全面積為a,它的頂點都在球面上,則這個球的表面積是$\frac{πa}{2}$,體積是$\frac{2\sqrt{2a}}{24}$.

查看答案和解析>>

同步練習冊答案