相關(guān)習(xí)題
 0  234631  234639  234645  234649  234655  234657  234661  234667  234669  234675  234681  234685  234687  234691  234697  234699  234705  234709  234711  234715  234717  234721  234723  234725  234726  234727  234729  234730  234731  234733  234735  234739  234741  234745  234747  234751  234757  234759  234765  234769  234771  234775  234781  234787  234789  234795  234799  234801  234807  234811  234817  234825  266669 

科目: 來(lái)源: 題型:填空題

5.已知拋物線x2=4y的焦點(diǎn)F的坐標(biāo)為(0,1);若M是拋物線上一點(diǎn),|MF|=5,O為坐標(biāo)原點(diǎn),則cos∠MFO=-$\frac{3}{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x3+ax2+bx+c,(a,b,c均為非零整數(shù)),且f(a)=a3,f(b)=b3,a≠b,則c=( 。
A.16B.8C.4D.1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.如圖,已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,則雙曲線C的離心率為( 。
A.$\frac{{2\sqrt{13}}}{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{{2\sqrt{39}}}{9}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$若0≤ax+by≤2恒成立,則a2+b2的最大值是( 。
A.1B.$\frac{8}{9}$C.$\frac{20}{9}$D.4

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.$({x+\frac{a}{x}}){({2x-\frac{1}{x}})^5}$展開(kāi)式中,各項(xiàng)系數(shù)之和為3,則展開(kāi)式中的常數(shù)項(xiàng)為(  )
A.-120B.-80C.80D.120

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.為了得到函數(shù)$y=cos({2x+\frac{π}{3}})$的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向右平移$\frac{5π}{6}$個(gè)單位B.向右平移$\frac{5π}{12}$個(gè)單位
C.向左平移$\frac{5π}{6}$個(gè)單位D.向左平移$\frac{5π}{12}$個(gè)單位

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.已知命題p:(x+2)(x+1)<0命題$q:x+\frac{1}{x}∈[{-\frac{5}{2},-2}]$,則下列說(shuō)法正確的是( 。
A.p是q的充要條件B.p是q的必要不充分條件
C.p是q的充分不必要條件D.是q的既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.已知集合A={x||x-1|<2},B={x|log2x<3},則A∩B=(  )
A.(-1,3)B.(0,3)C.(0,8)D.(-1,8)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知關(guān)于x的一元二次方程x2-2ax+a+2=0,當(dāng)a為何值時(shí),該方程:
(1)有兩個(gè)不同的正根;
(2)有不同的兩根且兩根在(1,3)內(nèi).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2x+2ax+b,且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$.
(Ⅰ)求實(shí)數(shù)a,b的值并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)判斷函數(shù)f(x)在[0,+∞)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案