相關(guān)習題
 0  234726  234734  234740  234744  234750  234752  234756  234762  234764  234770  234776  234780  234782  234786  234792  234794  234800  234804  234806  234810  234812  234816  234818  234820  234821  234822  234824  234825  234826  234828  234830  234834  234836  234840  234842  234846  234852  234854  234860  234864  234866  234870  234876  234882  234884  234890  234894  234896  234902  234906  234912  234920  266669 

科目: 來源: 題型:填空題

9.已知隨機變量X的分布列為P(X=i)=$\frac{i}{2a}$(i=1,2,3),則a=3.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知集合M={a,b,c},N={d,e},則從集合M到N可以建立不同的映射個數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目: 來源: 題型:解答題

7.棱長為1的正方體ABCD-A1B1C1D1中,E、F分別為棱BC、DD1的中點.
(1)若平面AFB1與平面BCC1B1的交線為l,l與底面AC的交點為點G,試求AG的長;
(2)求二面角A-FB1-E的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在長方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,A1A=AD=1,
求:(1)A1C與平面ABCD所成角的大小;
(2)平面A1D1DA與平面A1D1CB所成二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知隨機變量ξ的分布列為:
ξ-101
P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
又變量η=4ξ+3,則η的期望是( 。
A.$\frac{7}{2}$B.$\frac{5}{2}$C.-1D.1

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,在平面四邊形ABCD中,AB⊥AD,BD⊥CD,且AB=AD=DC=2,點M是BD的中點,現(xiàn)將平面四邊形ABCD沿對角線BD折起成四面體PBCD.
(1)當平面PBD⊥平面CBD時,求證:BP⊥平面PCD;
(2)在(1)的條件下,求二面角M-PC-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=2sin2(x+$\frac{π}{4}$)-2$\sqrt{2}$cos(x-$\frac{π}{4}$)-5a+2.
(1)設t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;
(2)對任意x∈[0,$\frac{π}{2}$],不等式f(x)≥6-2a恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
在如圖所示的陽馬P-ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點E是PC的
中點,連接DE,BD,BE.
(Ⅰ)證明:DE⊥平面PBC.試判斷四面體EBCD是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,請說明理由;
(Ⅱ)記陽馬P-ABCD的體積為V1,四面體EBCD的體積為V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.
(理科專用)(Ⅲ)若面DEF與面ABCD所成二面角的大小為$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.長方體ABCD-A1B1C1D1中,AB=BC=4,AA1=8,E是CC1的中點,O是下底面正方形ABCD的中心.
(1)求二面角C1-A1B1-O的大小(結(jié)果用反三角函數(shù)值表示)
(2)求異面直線A1B1與EO所成角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目: 來源: 題型:解答題

20.在正方體ABCD-A1B1C1D1中,底面邊長為2$\sqrt{2}$,BD與AC交于點O,
(1)求直線D1O與平面ABCD所成角.
(2)求點D到ACD1的距離.

查看答案和解析>>

同步練習冊答案